浏览全部资源
扫码关注微信
1.郑州大学河南省先进技术研究院 郑州 450003
2.国家纳米科学中心 北京 100190
Published:20 October 2022,
Received:15 March 2022,
Accepted:01 April 2022
移动端阅览
马振涛,尚颖旭,刘沣嵩等.基于DNA折纸超分子体系的自组装金属纳米结构及其光学性能研究[J].高分子学报,2022,53(10):1187-1203.
Ma Zhen-tao,Shang Ying-xu,Liu Feng-song,et al.Metal Nanostructures Based on DNA Origami Supramolecular Systems and Their Optical Properties[J].ACTA POLYMERICA SINICA,2022,53(10):1187-1203.
马振涛,尚颖旭,刘沣嵩等.基于DNA折纸超分子体系的自组装金属纳米结构及其光学性能研究[J].高分子学报,2022,53(10):1187-1203. DOI: 10.11777/j.issn1000-3304.2022.22082.
Ma Zhen-tao,Shang Ying-xu,Liu Feng-song,et al.Metal Nanostructures Based on DNA Origami Supramolecular Systems and Their Optical Properties[J].ACTA POLYMERICA SINICA,2022,53(10):1187-1203. DOI: 10.11777/j.issn1000-3304.2022.22082.
DNA分子是生物体内主要的遗传物质,其通过碱基互补配对作用形成稳定的双螺旋结构. 而碱基互补配对的特异性和强相互作用使DNA分子在制造纳米结构和材料方面也发挥着重要作用. 在几种基于DNA分子构建纳米结构的方法中,DNA折纸术凭借其高产率、稳定性和构建复杂形状的优异能力,能够对数百纳米尺寸的复杂、任意形状的结构进行可编程的自组装,这是其他纳米制造技术难以达到的. 在本文中,我们主要介绍了基于DNA折纸术的自组装金属纳米复合结构及其光学性能的研究进展. 首先,介绍了DNA折纸结构设计和构建的基本原理. 随后,综述了基于DNA折纸超分子体系构建的金属纳米复合结构在手性效应、表面增强拉曼散射效应和表面增强荧光效应中的最新应用进展. 最后,对现有体系中需要解决的问题以及未来的发展方向进行了展望.
DNA molecule is the main genetic material in an organism
which forms a stable double helix structure through base-pairing interactions. Besides
DNA molecule also plays an important role in the fabrication of various nanostructures due to the precise molecular recognition. DNA origami technique possesses great advantages in the fabrication of complex
arbitrary structures with high yield and stability. The excellent ability of DNA origami in building complex shapes with programmability and addressability makes DNA origami a powerful tool to construct various nanostructures that are difficult to achieve with other fabrication techniques. In this review
we mainly introduced the recent progress of metal nanostructures fabricated by DNA origami supramolecular systems and their optical properties. First
we introduced the basic principles of the design and construction of DNA origami. Subsequently
we summarized the recent progress in the fabrication of metal nanostructures based on DNA origami supramolecular self-assemblies and also introduced the optical applications in chirality
surface-enhanced Raman scattering and surface-enhanced fluorescence. Finally
the challenges and the perspectives of this field were also discussed.
DNA超分子自组装DNA折纸术手性表面增强拉曼散射表面增强荧光
Supramolecular systemsDNA origamiChiralitySurface-enhanced Raman scatteringSurface-enhanced fluorescence
Jones M R, Osberg K D, Macfarlane R J, Langille M R, Mirkin C A. Chem Rev, 2011, 111(6): 3736-3827. doi:10.1021/cr1004452http://dx.doi.org/10.1021/cr1004452
Gwo S, Chen H Y, Lin M H, Sun L, Li X. Chem Soc Rev, 2016, 45(20): 5672-5716. doi:10.1039/c6cs00450dhttp://dx.doi.org/10.1039/c6cs00450d
Seeman N C. J Theor Biol, 1982, 99(2): 237-247. doi:10.1016/0022-5193(82)90002-9http://dx.doi.org/10.1016/0022-5193(82)90002-9
Fu T J, Seeman N C. Biochemistry, 1993, 32(13): 3211-3220. doi:10.1021/bi00064a003http://dx.doi.org/10.1021/bi00064a003
He Y, Chen Y, Liu H, Ribbe A E, Mao C. J Am Chem Soc, 2005, 127(35): 12202-12203. doi:10.1021/ja0541938http://dx.doi.org/10.1021/ja0541938
Rothemund P W K. Nature, 2006, 440(7082): 297-302. doi:10.1038/nature04586http://dx.doi.org/10.1038/nature04586
Andersen E S, Dong M, Nielsen M M, Jahn K, Subramani R, Mamdouh W, Golas M M, Sander B, Stark H, Oliveira C L P, Pedersen J S, Birkedal V, Besenbacher F, Gothelf K V, Kjems J. Nature, 2009, 459(7243): 73-76. doi:10.1038/nature07971http://dx.doi.org/10.1038/nature07971
Douglas S M, Marblestone A H, Teerapittayanon S, Vazquez A, Church G M, Shih W M. Nucleic Acids Res, 2009, 37(15): 5001-5006. doi:10.1093/nar/gkp436http://dx.doi.org/10.1093/nar/gkp436
Douglas S M, Dietz H, Liedl T, Högberg B, Graf F, Shih W M. Nature, 2009, 459(7245): 414-418. doi:10.1038/nature08016http://dx.doi.org/10.1038/nature08016
Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H. Science, 2011, 332(6027): 342-346. doi:10.1126/science.1202998http://dx.doi.org/10.1126/science.1202998
Benson E, Mohammed A, Gardell J, Masich S, Czeizler E, Orponen P, Högberg B. Nature, 2015, 523(7561): 441-444. doi:10.1038/nature14586http://dx.doi.org/10.1038/nature14586
Tikhomirov G, Petersen P, Qian L. Nature, 2017, 552(7683): 67-71. doi:10.1038/nature24655http://dx.doi.org/10.1038/nature24655
Yao G, Zhang F, Wang F, Peng T, Liu H, Poppleton E, Šulc P, Jiang S, Liu L, Gong C, Jing X, Liu X, Wang L, Liu Y, Fan C, Yan H. Nat Chem, 2020, 12(11): 1067-1075. doi:10.1038/s41557-020-0539-8http://dx.doi.org/10.1038/s41557-020-0539-8
Zhao Y X, Shaw A, Zeng X, Benson E, Nyström A M, Högberg B. ACS Nano, 2012, 6(10): 8684-8691. doi:10.1021/nn3022662http://dx.doi.org/10.1021/nn3022662
Zhang Q, Jiang Q, Li N, Dai L, Liu Q, Song L, Wang J, Li Y, Tian J, Ding B, Du Y. ACS Nano, 2014, 8(7): 6633-6643. doi:10.1021/nn502058jhttp://dx.doi.org/10.1021/nn502058j
Schüller V J, Heidegger S, Sandholzer N, Nickels P C, Suhartha N A, Endres S, Bourquin C, Liedl T. ACS Nano, 2011, 5(12): 9696-9702. doi:10.1021/nn203161yhttp://dx.doi.org/10.1021/nn203161y
Rahman M A, Wang P, Zhao Z, Wang D, Nannapaneni S, Zhang C, Chen Z, Griffith C C, Hurwitz S J, Chen Z, Ke Y, Shin D M. Angew Chem Int Ed, 2017, 56(50): 16023-16027. doi:10.1002/anie.201709485http://dx.doi.org/10.1002/anie.201709485
Liu S, Jiang Q, Zhao X, Zhao R, Wang Y, Wang Y, Liu J, Shang Y, Zhao S, Wu T, Zhang Y, Nie G, Ding B. Nat Mater, 2021, 20(3): 421-430. doi:10.1038/s41563-020-0793-6http://dx.doi.org/10.1038/s41563-020-0793-6
Jiang Q, Song C, Nangreave J, Liu X, Lin L, Qiu D, Wang Z, Zou G, Liang X, Yan H, Ding B. J Am Chem Soc, 2012, 134(32): 13396-13403. doi:10.1021/ja304263nhttp://dx.doi.org/10.1021/ja304263n
Zanacchi F C, Manzo C, Alvarez A S, Derr N D, Garcia-Parajo M F, Lakadamyali M. Nat Methods, 2017, 14(8): 789-792. doi:10.1038/nmeth.4342http://dx.doi.org/10.1038/nmeth.4342
Steinhauer C, Jungmann R, Sobey T L, Simmel F C, Tinnefeld P. Angew Chem Int Ed, 2009, 48(47): 8870-8873. doi:10.1002/anie.200903308http://dx.doi.org/10.1002/anie.200903308
Schmied J J, Raab M, Forthmann C, Pibiri E, Wünsch B, Dammeyer T, Tinnefeld P. Nat Protoc, 2014, 9(6): 1367-1391. doi:10.1038/nprot.2014.079http://dx.doi.org/10.1038/nprot.2014.079
Jungmann R, Avendaño M S, Dai M, Woehrstein J B, Agasti S S, Feiger Z, Rodal A, Yin P. Nat Methods, 2016, 13(5): 439-442. doi:10.1038/nmeth.3804http://dx.doi.org/10.1038/nmeth.3804
Wilner O I, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I. Nat Nanotechnol, 2009, 4(4): 249-254. doi:10.1038/nnano.2009.50http://dx.doi.org/10.1038/nnano.2009.50
Niemeyer C M, Koehler J, Wuerdemann C. ChemBioChem, 2002, 3(2-3): 242-245. doi:10.1002/1439-7633(20020301)3:2/3<242::aid-cbic242>3.0.co;2-fhttp://dx.doi.org/10.1002/1439-7633(20020301)3:2/3<242::aid-cbic242>3.0.co;2-f
Liu M, Fu J, Qi X, Wootten S, Woodbury N, Liu Y, Yan H. ChemBioChem, 2016, 17: 1097-1101. doi:10.1002/cbic.201600103http://dx.doi.org/10.1002/cbic.201600103
Fu J, Yang Y R, Dhakal S, Zhao Z, Liu M, Zhang T, Walter N G, Yan H. Nat Protoc, 2016, 11(11): 2243-2273. doi:10.1038/nprot.2016.139http://dx.doi.org/10.1038/nprot.2016.139
Fu J, Liu M, Liu Y, Woodbury N W, Yan H. J Am Chem Soc, 2012, 134(12): 5516-5519. doi:10.1021/ja300897hhttp://dx.doi.org/10.1021/ja300897h
Lin C, Liu Y, Rinker S, Yan H. Chemphyschem, 2006, 7(8): 1641-1647. doi:10.1002/cphc.200600260http://dx.doi.org/10.1002/cphc.200600260
Braun E, Eichen Y, Sivan U, Ben-Yoseph G. Nature, 1998, 391(6669): 775-778. doi:10.1038/35826http://dx.doi.org/10.1038/35826
Patolsky F, Weizmann Y, Lioubashevski O, Willner I. Angew Chem Int Ed, 2002, 41(13): 2323-2327. doi:10.1002/1521-3773(20020703)41:13<2323::aid-anie2323>3.0.co;2-hhttp://dx.doi.org/10.1002/1521-3773(20020703)41:13<2323::aid-anie2323>3.0.co;2-h
Nguyen K, Monteverde M, Filoramo A, Goux-Capes L, Lyonnais S, Jegou P, Viel P, Goffman M, Bourgoin J. Adv Mater, 2008, 20(6): 1099-1104. doi:10.1002/adma.200701803http://dx.doi.org/10.1002/adma.200701803
Mbindyo J K N, Reiss B D, Martin B R, Keating C D, Natan M J, Mallouk T E. Adv Mater, 2001, 13(4): 249-254. doi:10.1002/1521-4095(200102)13:4<249::aid-adma249>3.0.co;2-9http://dx.doi.org/10.1002/1521-4095(200102)13:4<249::aid-adma249>3.0.co;2-9
Lee J, Wang A A, Rheem Y, Yoo B, Mulchandani A, Chen W, Myung N V. Electroanalysis, 2007, 19(22): 2287-2293. doi:10.1002/elan.200704000http://dx.doi.org/10.1002/elan.200704000
Fischler M, Simon U, Nir H, Eichen Y, Burley G A, Gierlich J, Gramlich P M E, Carell T. Small, 2007, 3(6): 1049-1055. doi:10.1002/smll.200600534http://dx.doi.org/10.1002/smll.200600534
Richter J, Mertig M, Pompe W, Mönch I, Schackert H K. Appl Phys Lett, 2001, 78(4): 536-538. doi:10.1063/1.1338967http://dx.doi.org/10.1063/1.1338967
Li B, Jiang B, Han W, He M, Li X, Wang W, Hong S W, Byun M, Lin S, Lin Z. Angew Chem Int Ed, 2017, 56(16): 4554-4559. doi:10.1002/anie.201700457http://dx.doi.org/10.1002/anie.201700457
Schreiber R, Kempter S, Holler S, Schüller V, Schiffels D, Simmel S S, Nickels P C, Liedl T. Small, 2011, 7(13): 1795-1799. doi:10.1002/smll.201100465http://dx.doi.org/10.1002/smll.201100465
Wang Z G, Liu Q, Li N, Ding B. Chem Mater, 2016, 28(23): 8834-8841. doi:10.1021/acs.chemmater.6b04150http://dx.doi.org/10.1021/acs.chemmater.6b04150
Li N, Shang Y, Xu R, Jiang Q, Liu J, Wang L, Cheng Z, Ding B. J Am Chem Soc, 2019, 141(45): 17968-17972. doi:10.1021/jacs.9b09308http://dx.doi.org/10.1021/jacs.9b09308
Jia S, Wang J, Xie M, Sun J, Liu H, Zhang Y, Chao J, Li J, Wang L, Lin J, Gothelf K V, Fan C. Nat Commun, 2019, 10(1): 5597. doi:10.1038/s41467-019-13507-5http://dx.doi.org/10.1038/s41467-019-13507-5
Shang Y, Li N, Liu S, Wang L, Wang Z G, Zhang Z, Ding B. Adv Mater, 2020, 32(21): 2000294. doi:10.1002/adma.202000294http://dx.doi.org/10.1002/adma.202000294
Sun W, Boulais E, Hakobyan Y, Wang Wei L, Guan A, Bathe M, Yin P. Science, 2014, 346(6210): 1258361. doi:10.1126/science.1258361http://dx.doi.org/10.1126/science.1258361
Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature, 1996, 382(6592): 607-609. doi:10.1038/382607a0http://dx.doi.org/10.1038/382607a0
Alivisatos A P, Johnsson K P, Peng X, Wilson T E, Loweth C J, Bruchez M P, Schultz P G. Nature, 1996, 382(6592): 609-611. doi:10.1038/382609a0http://dx.doi.org/10.1038/382609a0
Yan W, Xu L, Xu C, Ma W, Kuang H, Wang L, Kotov N A. J Am Chem Soc, 2012, 134(36): 15114-15121. doi:10.1021/ja3066336http://dx.doi.org/10.1021/ja3066336
Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R N, Bokor J. J Am Chem Soc, 2010, 132(10): 3248-3249. doi:10.1021/ja9101198http://dx.doi.org/10.1021/ja9101198
Pal S, Deng Z, Wang H, Zou S, Liu Y, Yan H. J Am Chem Soc, 2011, 133(44): 17606-17609. doi:10.1021/ja207898rhttp://dx.doi.org/10.1021/ja207898r
Schreiber R, Do J, Roller E M, Zhang T, Schüller V J, Nickels P C, Feldmann J, Liedl T. Nat Nanotechnol, 2014, 9(1): 74-78. doi:10.1038/nnano.2013.253http://dx.doi.org/10.1038/nnano.2013.253
Li Y, Pei J, Lu X, Jiao Y, Liu F, Wu X, Liu J, Ding B. J Am Chem Soc, 2021, 143(47): 19893-19900. doi:10.1021/jacs.1c09472http://dx.doi.org/10.1021/jacs.1c09472
Wang P, Huh J-H, Park H, Yang D, Zhang Y, Zhang Y, Lee J, Lee S, Ke Y. Nano Lett, 2020, 20(12): 8926-8932. doi:10.1021/acs.nanolett.0c04055http://dx.doi.org/10.1021/acs.nanolett.0c04055
Tian Y, Lhermitte J R, Bai L, Vo T, Xin H L, Li H, Li R, Fukuto M, Yager K G, Kahn J S, Xiong Y, Minevich B, Kumar S K, Gang O. Nat Mater, 2020, 19(7): 789-796. doi:10.1038/s41563-019-0550-xhttp://dx.doi.org/10.1038/s41563-019-0550-x
Zhan P, Dutta P K, Wang P, Song G, Dai M, Zhao S X, Wang Z G, Yin P, Zhang W, Ding B, Ke Y. ACS Nano, 2017, 11(2): 1172-1179. doi:10.1021/acsnano.6b06861http://dx.doi.org/10.1021/acsnano.6b06861
Lan X, Liu T, Wang Z, Govorov A O, Yan H, Liu Y. J Am Chem Soc, 2018, 140(37): 11763-11770. doi:10.1021/jacs.8b06526http://dx.doi.org/10.1021/jacs.8b06526
Zhou C, Duan X, Liu N. Acc Chem Res, 2017, 50(12): 2906-2914. doi:10.1021/acs.accounts.7b00389http://dx.doi.org/10.1021/acs.accounts.7b00389
Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T. Nat Mater, 2010, 9(9): 707-715. doi:10.1038/nmat2810http://dx.doi.org/10.1038/nmat2810
Fasman G D. Circular Dichroism and the Conformational Analysis of Biomolecules. New York: Springer, 1996. 25-30. doi:10.1007/978-1-4757-2508-7_15http://dx.doi.org/10.1007/978-1-4757-2508-7_15
Lieberman I, Shemer G, Fried T, Kosower E M, Markovich G. Angew Chem Int Ed, 2008, 47(26): 4855-4857. doi:10.1002/anie.200800231http://dx.doi.org/10.1002/anie.200800231
Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E M, Högele A, Simmel F C, Govorov A, Liedl T. Nature, 2012, 483(7389): 311-314. doi:10.1038/nature10889http://dx.doi.org/10.1038/nature10889
Shen X, Song C, Wang J, Shi D, Wang Z, Liu N, Ding B. J Am Chem Soc, 2012, 134(1): 146-149. doi:10.1021/ja209861xhttp://dx.doi.org/10.1021/ja209861x
Shen X, Asenjo-Garcia A, Liu Q, Jiang Q, García de Abajo F J, Liu N, Ding B. Nano Lett, 2013, 13(5): 2128-2133. doi:10.1021/nl400538yhttp://dx.doi.org/10.1021/nl400538y
Urban M J, Dutta P K, Wang P, Duan X, Shen X, Ding B, Ke Y, Liu N. J Am Chem Soc, 2016, 138(17): 5495-5498. doi:10.1021/jacs.6b00958http://dx.doi.org/10.1021/jacs.6b00958
Shen X, Zhan P, Kuzyk A, Liu Q, Asenjo-Garcia A, Zhang H, García de Abajo F J, Govorov A, Ding B, Liu N. Nanoscale, 2014, 6(4): 2077-2081. doi:10.1039/c3nr06006chttp://dx.doi.org/10.1039/c3nr06006c
Lan X, Chen Z, Dai G, Lu X, Ni W, Wang Q. J Am Chem Soc, 2013, 135(31): 11441-11444. doi:10.1021/ja404354chttp://dx.doi.org/10.1021/ja404354c
Lan X, Lu X, Shen C, Ke Y, Ni W, Wang Q. J Am Chem Soc, 2015, 137(1): 457-462. doi:10.1021/ja511333qhttp://dx.doi.org/10.1021/ja511333q
Lan X, Su Z, Zhou Y, Meyer T, Ke Y, Wang Q, Chiu W, Liu N, Zou S, Yan H, Liu Y. Angew Chem Int Ed, 2017, 56(46): 14632-14636. doi:10.1002/anie.201709775http://dx.doi.org/10.1002/anie.201709775
Zhu J, Wu F, Han Z, Shang Y, Liu F, Yu H, Yu L, Li N, Ding B. Nano Lett, 2021, 21(8): 3573-3580. doi:10.1021/acs.nanolett.1c00596http://dx.doi.org/10.1021/acs.nanolett.1c00596
Kuzyk A, Schreiber R, Zhang H, Govorov A O, Liedl T, Liu N. Nat Mater, 2014, 13(9): 862-866. doi:10.1038/nmat4031http://dx.doi.org/10.1038/nmat4031
Urban M J, Zhou C, Duan X, Liu N. Nano Lett, 2015, 15(12): 8392-8396. doi:10.1021/acs.nanolett.5b04270http://dx.doi.org/10.1021/acs.nanolett.5b04270
Kuzyk A, Urban Maximilian J, Idili A, Ricci F, Liu N. Sci Adv, 2017, 3(4): e1602803. doi:10.1126/sciadv.1602803http://dx.doi.org/10.1126/sciadv.1602803
Jiang Q, Liu Q, Shi Y, Wang Z G, Zhan P, Liu J, Liu C, Wang H, Shi X, Zhang L, Sun J, Ding B, Liu M. Nano Lett, 2017, 17(11): 7125-7130. doi:10.1021/acs.nanolett.7b03946http://dx.doi.org/10.1021/acs.nanolett.7b03946
Camden J P, Dieringer J A, Wang Y, Masiello D J, Marks L D, Schatz G C, van Duyne R P. J Am Chem Soc, 2008, 130(38): 12616-12617. doi:10.1021/ja8051427http://dx.doi.org/10.1021/ja8051427
Kleinman S L, Frontiera R R, Henry A I, Dieringer J A, van Duyne R P. Phys Chem Chem Phys, 2013, 15(1): 21-36. doi:10.1039/c2cp42598jhttp://dx.doi.org/10.1039/c2cp42598j
Zhang Q, Moran C H, Xia X, Rycenga M, Li N, Xia Y. Langmuir, 2012, 28(24): 9047-9054. doi:10.1021/la300253ahttp://dx.doi.org/10.1021/la300253a
Wustholz K L, Henry A I, McMahon J M, Freeman R G, Valley N, Piotti M E, Natan M J, Schatz G, Van Duyne R. J Am Chem Soc, 2010, 132(31): 10903-10910. doi:10.1021/ja104174mhttp://dx.doi.org/10.1021/ja104174m
Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D. Nat Mater, 2010, 9(1): 60-67. doi:10.1038/nmat2596http://dx.doi.org/10.1038/nmat2596
Lim D K, Jeon K S, Hwang J H, Kim H, Kwon S, Suh Y D, Nam J M. Nat Nanotechnol, 2011, 6(7): 452-460. doi:10.1038/nnano.2011.79http://dx.doi.org/10.1038/nnano.2011.79
Prinz J, Schreiber B, Olejko L, Oertel J, Rackwitz J, Keller A, Bald I. J Phys Chem Lett, 2013, 4(23): 4140-4145. doi:10.1021/jz402076bhttp://dx.doi.org/10.1021/jz402076b
Pilo-Pais M, Watson A, Demers S, LaBean T H, Finkelstein G. Nano Lett, 2014, 14(4): 2099-2104. doi:10.1021/nl5003069http://dx.doi.org/10.1021/nl5003069
Thacker V V, Herrmann L O, Sigle D O, Zhang T, Liedl T, Baumberg J J, Keyser U F. Nat Commun, 2014, 5(1): 3448. doi:10.1038/ncomms4448http://dx.doi.org/10.1038/ncomms4448
Kühler P, Roller E M, Schreiber R, Liedl T, Lohmüller T, Feldmann J. Nano Lett, 2014, 14(5): 2914-2919. doi:10.1021/nl5009635http://dx.doi.org/10.1021/nl5009635
Zhou C, Yang Y, Li H, Gao F, Song C, Yang D, Xu F, Liu N, Ke Y, Su S, Wang P. Nano Lett, 2020, 20(5): 3155-3159. doi:10.1021/acs.nanolett.9b05161http://dx.doi.org/10.1021/acs.nanolett.9b05161
Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S. Phys Rev Lett, 1997, 78(9): 1667-1670. doi:10.1103/physrevlett.78.1667http://dx.doi.org/10.1103/physrevlett.78.1667
Nie S, Emory S R. Science, 1997, 275(5303): 1102-1106. doi:10.1126/science.275.5303.1102http://dx.doi.org/10.1126/science.275.5303.1102
Simoncelli S, Roller E M, Urban P, Schreiber R, Turberfield A J, Liedl T, Lohmüller T. ACS Nano, 2016, 10(11): 9809-9815. doi:10.1021/acsnano.6b05276http://dx.doi.org/10.1021/acsnano.6b05276
Fang W, Jia S, Chao J, Wang L, Duan X, Liu H, Li Q, Zou X, Wang L, Wang L, Liu N, Fan C. Sci Adv, 2019, 5(9): eaau4506. doi: 10.1126/sciadv.aau4506http://dx.doi.org/10.1126/sciadv.aau4506
Zhan P, Wen T, Wang Z G, He Y, Shi J, Wang T, Liu X, Lu G, Ding B. Angew Chem Int Ed, 2018, 57(11): 2846-2850. doi:10.1002/anie.201712749http://dx.doi.org/10.1002/anie.201712749
Tapio K, Mostafa A, Kanehira Y, Suma A, Dutta A, Bald I. ACS Nano, 2021, 15(4): 7065-7077. doi:10.1021/acsnano.1c00188http://dx.doi.org/10.1021/acsnano.1c00188
Niu R, Song C, Gao F, Fang W, Jiang X, Ren S, Zhu D, Su S, Chao J, Chen S, Fan C, Wang L. Angew Chem Int Ed, 2021, 60(21): 11695-11701. doi:10.1002/anie.202016014http://dx.doi.org/10.1002/anie.202016014
Drexhage K H. J Lumin, 1970, 1-2: 693-701. doi:10.1016/0022-2313(70)90082-7http://dx.doi.org/10.1016/0022-2313(70)90082-7
Acuna G P, Bucher M, Stein I H, Steinhauer C, Kuzyk A, Holzmeister P, Schreiber R, Moroz A, Stefani F, Liedl T, Simmel F, Tinnefeld P. ACS Nano, 2012, 6(4): 3189-3195. doi:10.1021/nn2050483http://dx.doi.org/10.1021/nn2050483
Acuna G P, Möller F M, Holzmeister P, Beater S, Lalkens B, Tinnefeld P. Science, 2012, 338(6106): 506-510. doi:10.1126/science.1228638http://dx.doi.org/10.1126/science.1228638
Puchkova A, Vietz C, Pibiri E, Wünsch B, Sanz Paz M, Acuna G P, Tinnefeld P. Nano Lett, 2015, 15(12): 8354-8359. doi:10.1021/acs.nanolett.5b04045http://dx.doi.org/10.1021/acs.nanolett.5b04045
Trofymchuk K, Glembockyte V, Grabenhorst L, Steiner F, Vietz C, Close C, Pfeiffer M, Richter L, Schütte M, Selbach F, Yaadav R, Zähringer J, Wei Q, Ozcan A, Lalkens B, Acuna G, Tinnefeld P. Nat Commun, 2021, 12(1): 950. doi:10.1038/s41467-021-21238-9http://dx.doi.org/10.1038/s41467-021-21238-9
Ochmann S E, Vietz C, Trofymchuk K, Acuna G P, Lalkens B, Tinnefeld P. Anal Chem, 2017, 89(23): 13000-13007. doi:10.1021/acs.analchem.7b04082http://dx.doi.org/10.1021/acs.analchem.7b04082
Vietz C, Lalkens B, Acuna G P, Tinnefeld P. Nano Lett, 2017, 17(10): 6496-6500. doi:10.1021/acs.nanolett.7b03844http://dx.doi.org/10.1021/acs.nanolett.7b03844
Wang D, Vietz C, Schröder T, Acuna G, Lalkens B, Tinnefeld P. Nano Lett, 2017, 17(9): 5368-5374. doi:10.1021/acs.nanolett.7b01829http://dx.doi.org/10.1021/acs.nanolett.7b01829
Kaminska I, Bohlen J, Mackowski S, Tinnefeld P, Acuna G P. ACS Nano, 2018, 12(2): 1650-1655. doi:10.1021/acsnano.7b08233http://dx.doi.org/10.1021/acsnano.7b08233
Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J. Nature, 2016, 535(7610): 127-130. doi:10.1038/nature17974http://dx.doi.org/10.1038/nature17974
Kershner R J, Bozano L D, Micheel C M, Hung A M, Fornof A R, Cha J N, Rettner C T, Bersani M, Frommer J, Rothemund P W K, Wallraff G M. Nat Nanotechnol, 2009, 4(9): 557-561. doi:10.1038/nnano.2009.220http://dx.doi.org/10.1038/nnano.2009.220
Hung A M, Micheel C M, Bozano L D, Osterbur L W, Wallraff G M, Cha J N. Nat Nanotechnol, 2010, 5(2): 121-126. doi:10.1038/nnano.2009.450http://dx.doi.org/10.1038/nnano.2009.450
Gopinath A, Rothemund P W K. ACS Nano, 2014, 8(12): 12030-12040. doi:10.1021/nn506014shttp://dx.doi.org/10.1021/nn506014s
Gopinath A, Miyazono E, Faraon A, Rothemund P W K. Nature, 2016, 535(7612): 401-405. doi:10.1038/nature18287http://dx.doi.org/10.1038/nature18287
Gopinath A, Thachuk C, Mitskovets A, Atwater H A, Kirkpatrick D, Rothemund P W K. Science, 2021, 371(6531): eabd6179. doi:10.1126/science.abd6179http://dx.doi.org/10.1126/science.abd6179
Prinz J, Matković A, Pešić J, Gajić R, Bald I. Small, 2016, 12(39): 5458-5467. doi:10.1002/smll.201601908http://dx.doi.org/10.1002/smll.201601908
Sigl C, Willner E M, Engelen W, Kretzmann J A, Sachenbacher K, Liedl A, Kolbe F, Wilsch F, Aghvami S A, Protzer U, Hagan M F, Fraden S, Dietz H. Nat Mater, 2021, 20(9): 1281-1289. doi:10.1038/s41563-021-01020-4http://dx.doi.org/10.1038/s41563-021-01020-4
Ong L L, Hanikel N, Yaghi O K, Grun C, Strauss M T, Bron P, Lai-Kee-Him J, Schueder F, Wang B, Wang P, Kishi J, Myhrvold C, Zhu A, Jungmann R, Bellot G, Ke Y, Yin P. Nature, 2017, 552(7683): 72-77. doi:10.1038/nature24648http://dx.doi.org/10.1038/nature24648
Praetorius F, Kick B, Behler K L, Honemann M N, Weuster-Botz D, Dietz H. Nature, 2017, 552(7683): 84-87. doi:10.1038/nature24650http://dx.doi.org/10.1038/nature24650
0
Views
143
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution