浏览全部资源
扫码关注微信
1.吉林大学材料科学与工程学院 汽车材料教育部重点实验室 长春 130025
2.中国科学院长春应用化学研究所 中科院生态环境高分子材料重点实验室 长春 130022
Published:20 September 2022,
Published Online:15 July 2022,
Received:19 March 2022,
Accepted:20 April 2022
移动端阅览
张昊天,胡晨阳,李莉莉等.开环聚合催化剂用于脂肪族聚酯合成的研究进展[J].高分子学报,2022,53(09):1057-1071.
Zhang Hao-tian,Hu Chen-yang,Li-li Li,et al.Research Progress on Ring-opening Polymerization Catalysts and the Synthesis of Aliphatic Polyesters[J].ACTA POLYMERICA SINICA,2022,53(09):1057-1071.
张昊天,胡晨阳,李莉莉等.开环聚合催化剂用于脂肪族聚酯合成的研究进展[J].高分子学报,2022,53(09):1057-1071. DOI: 10.11777/j.issn1000-3304.2022.22088.
Zhang Hao-tian,Hu Chen-yang,Li-li Li,et al.Research Progress on Ring-opening Polymerization Catalysts and the Synthesis of Aliphatic Polyesters[J].ACTA POLYMERICA SINICA,2022,53(09):1057-1071. DOI: 10.11777/j.issn1000-3304.2022.22088.
与广泛使用的聚烯烃材料相比,脂肪族聚酯由于其独特的生物相容性和可降解性,在电子、包装和生物医学等领域都有广泛的应用. 开环聚合(ROP)是目前合成脂肪族聚酯的主要方法,本文针对催化开环聚合用于合成脂肪族聚酯,总结了该领域所涉及的2类主要催化体系,即金属基催化剂和无金属有机催化剂,同时对新兴的酶催化体系做了初步介绍. 列举了相关重要催化体系的化学结构,旨在揭示各类体系的催化反应特点,重点关注和评述了催化剂结构对催化效率、可控性、分子量和立体选择性的影响. 金属基催化剂主要包括中心金属与
N
-杂环卡宾、硫脲等配位生成的配合物,其在结构上具有较大的可调性,可根据催化的需要选择不同的结构;而无金属有机催化剂如有机碱催化剂(如磷腈碱和
N
-杂环卡宾等),有机酸催化剂(如磷酸和方酸等),往往具有高效催化效率、摩尔质量控制和立体选择性的优点;除此以外脂肪酶催化剂具有反应范围广、反应温和以及无金属污染残留的特点.
Compared with widely used polyolefin materials
aliphatic polyesters can show the same properties
and their unique biocompatibility and degradability make them widely used in electronics
absorbable surgical suture
food packaging
biomedicine and so on. They have become an environmentally friendly substitute for traditional polyolefin plastics
especially aliphatic polyester materials derived from biomass. Ring opening polymerization (ROP) is the main method for synthesizing aliphatic polyester at present. Aiming at the application of catalytic ring opening polymerization in the synthesis of aliphatic polyester
this paper summarizes two main catalytic systems involved in this field
namely metal based catalyst and metal free organic catalyst
and gives a preliminary introduction to the emerging enzyme catalytic system. This paper lists the chemical structures of relevant important catalytic systems
aims to reveal the catalytic reaction characteristics of various systems
and focuses on and comments on the effects of catalyst structure on catalytic efficiency
controllability
molecular weight and stereoselectivity. Specifically
metal based catalysts mainly include complexes formed by the coordination of central metal with
N
-heterocyclic carbene and thiourea
which have great adjustability in structure
and different structures can be selected according to the needs of catalysis; Metal free organic catalysts such as organic base catalysts (phosphonitrile base
N
-heterocyclic carbene
etc
.) and organic acid catalysts (phosphoric acid
squaric acid
etc
.) often have the advantages of high catalytic efficiency
molar mass control and stereoselectivity. In addition
lipase catalyst has the characteristics of wide reaction range
mild reaction and no metal pollution residue.
开环聚合脂肪族聚酯金属基催化剂有机催化剂
Ring-opening polymerizationAliphatic polyesterMetal-based catalystsOrganocatalysts
Bhattacharjee J, Sarkar A, Panda T K. Chem Rec, 2021, 21(8): 1898-1911. doi:10.1002/tcr.202100148http://dx.doi.org/10.1002/tcr.202100148
Contreras-Ramirez J M, Monsalve M. Polym Sci, Ser B, 2021, 63(2): 94-102. doi:10.1134/s1560090421020044http://dx.doi.org/10.1134/s1560090421020044
Hevilla V, Sonseca A, Echeverria C, Munoz-Bonilla A, Fernandez-Garcia M. Macromol Biosci, 2021, 21(10): 2100156. doi:10.1002/mabi.202100156http://dx.doi.org/10.1002/mabi.202100156
Nabgui A, El Assimi T, El Meziane A, Luinstra G A, Raihane M, Gouhier G, Thebault P, Draoui K, Lahcini M. Eur Polym J, 2021, 156: 110602. doi:10.1016/j.eurpolymj.2021.110602http://dx.doi.org/10.1016/j.eurpolymj.2021.110602
Nomura K, Awang N W B. ACS Sustain Chem Eng, 2021, 9(16): 5486-5505
Rao W, Cai C, Tang J, Wei Y, Gao C, Yu L, Ding J. Chinese J Chem, 2021, 39(7): 1965-1974. doi:10.1002/cjoc.202000519http://dx.doi.org/10.1002/cjoc.202000519
Yang P B, Davidson M G, Edler K J, Brown S. Biomacromolecules, 2021, 22(9): 3649-3667. doi:10.1021/acs.biomac.1c00638http://dx.doi.org/10.1021/acs.biomac.1c00638
Garcia-Gallego S, Stenstrom P, Mesa-Antunez P, Zhang Y, Malkoch M. Biomacromolecules, 2020, 21(10): 4273-4279. doi:10.1021/acs.biomac.0c01068http://dx.doi.org/10.1021/acs.biomac.0c01068
Li M, Zhou L, Zhang Z, Wang Q, Gao J, Zhang S, Lei L. Polym Chem, 2021, 12(35): 5069-5076. doi:10.1039/d1py00892ghttp://dx.doi.org/10.1039/d1py00892g
Plajer A J, Williams C K. Angew Chem Int Ed, 2021, 60(24): 13372-13379. doi:10.1002/anie.202101180http://dx.doi.org/10.1002/anie.202101180
Cheng K, Lu S, Wang K, Luo G. React Chem Eng, 2021, 7(1): 76-83. doi:10.1039/d1re00434dhttp://dx.doi.org/10.1039/d1re00434d
Li C, Li Y. Chem J Chinese U, 2021, 42(10): 3203-3210. doi:10.1016/s1872-2067(21)63812-3http://dx.doi.org/10.1016/s1872-2067(21)63812-3
Martinez de Ilarduya A, Munoz Guerra S. Polym Chem, 2020, 11(30): 4850-4860. doi:10.1039/d0py00258ehttp://dx.doi.org/10.1039/d0py00258e
Moins S, Henoumont C, de Roover Q, Laurent S, de Winter J, Coulembier O. Catal Sci Technol, 2021, 11(13): 4387-4391. doi:10.1039/d1cy00756dhttp://dx.doi.org/10.1039/d1cy00756d
Zhang X, Jiang Y, Ma Q, Hu S, Wang Q, Liao S. Eur Polym J, 2020, 123: 109449. doi:10.1016/j.eurpolymj.2019.109449http://dx.doi.org/10.1016/j.eurpolymj.2019.109449
Ryzhakov D, Printz G, Jacques B, Messaoudi S, Dumas F, Dagorne S, Le Bideau F. Polym Chem, 2021, 12(20): 2932-2946. doi:10.1039/d1py00020ahttp://dx.doi.org/10.1039/d1py00020a
Abd Elwakil M M, Gao T, Isono T, Sato Y, Elewa Y H A, Satoh T, Harashima H. Mater Horiz, 2021, 8(8): 2251-2259. doi:10.1039/d1mh00185jhttp://dx.doi.org/10.1039/d1mh00185j
Chin A L, Wang X, Tong R. Macromol Biosci, 2021, 21(7): 2100087. doi:10.1002/mabi.202100087http://dx.doi.org/10.1002/mabi.202100087
Gupta P K, Gahtori R, Govarthanan K, Sharma V, Pappuru S, Pandit S, Mathuriya A S, Dholpuria S, Bishi D K. Mat Sci Eng C-Mater, 2021, 127: 112198. doi:10.1016/j.msec.2021.112198http://dx.doi.org/10.1016/j.msec.2021.112198
Zhao G, Ge T, Yan Y, Shuai Q, Su W K. Int J Mol Sci, 2021, 22(19): 10407. doi:10.3390/ijms221910407http://dx.doi.org/10.3390/ijms221910407
Guo Z, Duan R, Deng M, Pang X, Hu C, Chen X. Sci China Chem, 2015, 58(11): 1741-1747. doi:10.1007/s11426-015-5461-3http://dx.doi.org/10.1007/s11426-015-5461-3
Guo S, Sun C, Meng L, Zeng Y. J Comput Chem, 2019, 40(32): 2827-2833. doi:10.1002/jcc.26059http://dx.doi.org/10.1002/jcc.26059
Kim da H, Yoo J Y, Ko Y S. J Nanosci Nanotechnol, 2016, 16(5): 4539-4543. doi:10.1166/jnn.2016.11025http://dx.doi.org/10.1166/jnn.2016.11025
Kurokawa K, Yamashita K, Doi Y, Abe H. Biomacromolecules, 2008, 9(3): 1071-1078. doi:10.1021/bm701259rhttp://dx.doi.org/10.1021/bm701259r
Osten K M, Mehrkhodavandi P. Acc Chem Res, 2017, 50(11): 2861-2869. doi:10.1021/acs.accounts.7b00447http://dx.doi.org/10.1021/acs.accounts.7b00447
Maruta Y, Abiko A. Polym Bull, 2014, 71(6): 1433-1440. doi:10.1007/s00289-014-1133-2http://dx.doi.org/10.1007/s00289-014-1133-2
Pappuru S, Chakraborty D. Eur Polym J, 2019, 121: 109276. doi:10.1016/j.eurpolymj.2019.109276http://dx.doi.org/10.1016/j.eurpolymj.2019.109276
Zhu Y, Romain C, Poirier V, Williams C K. Macromolecules, 2015, 48(8): 2407-2416. doi:10.1021/acs.macromol.5b00225http://dx.doi.org/10.1021/acs.macromol.5b00225
Ghosh S, Glockler E, Wolper C, Tjaberings A, Groschel A H, Schulz S. Dalton Trans, 2020, 49(38): 13475-13486. doi:10.1039/d0dt02831bhttp://dx.doi.org/10.1039/d0dt02831b
Bayer U, Anwander R. Dalton Trans, 2020, 49(48): 17472-17493. doi:10.1039/d0dt03578ehttp://dx.doi.org/10.1039/d0dt03578e
Wu J, Chen H Y, Hormnirun P. Front Chem, 2019, 7: 404. doi:10.3389/fchem.2019.00404http://dx.doi.org/10.3389/fchem.2019.00404
Trott G, Saini P K, Williams C K. Philos Trans A Math Phys Eng Sci, 2016, 374(2061): 20150085. doi:10.1098/rsta.2015.0085http://dx.doi.org/10.1098/rsta.2015.0085
Zikode M, Ojwach S O, Akerman M P. J Mol Catal A Chem, 2016, 413: 24-31. doi:10.1016/j.molcata.2015.12.008http://dx.doi.org/10.1016/j.molcata.2015.12.008
Jia B, Hao J, Wei X, Tong H, Zhou M, Liu D. J Organomet Chem, 2017, 831: 11-17. doi:10.1016/j.jorganchem.2016.12.031http://dx.doi.org/10.1016/j.jorganchem.2016.12.031
Balasanthiran V, Chisholm M H, Choojun K, Durr C B, Wambua P M. Polyhedron, 2016, 103: 235-240. doi:10.1016/j.poly.2015.02.024http://dx.doi.org/10.1016/j.poly.2015.02.024
D'Auria I, Tedesco C, Mazzeo M, Pellecchia C. Dalton Trans, 2017, 46(36): 12217-12225. doi:10.1039/c7dt02445bhttp://dx.doi.org/10.1039/c7dt02445b
Devaine-Pressing K, Lehr J H, Pratt M E, Dawe L N, Sarjeant A A, Kozak C M. Dalton Trans, 2015, 44(27): 12365-12375. doi:10.1039/c5dt00236bhttp://dx.doi.org/10.1039/c5dt00236b
Chen H Y, Mialon L, Abboud K A, Miller S A. Organometallics, 2012, 31(15): 5252-5261. doi:10.1021/om300121chttp://dx.doi.org/10.1021/om300121c
Huang T L, Chen C T. Dalton Trans, 2013, 42(25): 9255-9262. doi:10.1039/c2dt32300ahttp://dx.doi.org/10.1039/c2dt32300a
Colwell J M, Wentrup-Byrne E, George G A, Schué F. Polym Int, 2015, 64(5): 654-660. doi:10.1002/pi.4823http://dx.doi.org/10.1002/pi.4823
Dai Z, Sun Y, Xiong J, Pan X, Tang N, Wu J. Catal Sci Technol, 2016, 6(2): 515-520. doi:10.1039/c5cy01194ahttp://dx.doi.org/10.1039/c5cy01194a
Biernesser A B, Delle Chiaie K R, Curley J B, Byers J A. Angew Chem Int Ed, 2016, 55(17): 5251-5254. doi:10.1002/anie.201511793http://dx.doi.org/10.1002/anie.201511793
Ahn S H, Chun M K, Kim E, Jeong J H, Nayab S, Lee H. Polyhedron, 2017, 127: 51-58. doi:10.1016/j.poly.2017.01.050http://dx.doi.org/10.1016/j.poly.2017.01.050
Fortun S, Daneshmand P, Schaper F. Angew Chem Int Ed, 2015, 54(46): 13669-13672. doi:10.1002/anie.201505674http://dx.doi.org/10.1002/anie.201505674
Akpan E D, Ojwach S O, Omondi B, Nyamori V O. New J Chem, 2016, 40(4): 3499-3510. doi:10.1039/c5nj03159ahttp://dx.doi.org/10.1039/c5nj03159a
Wu J, Yu T L, Chen C T, Lin C C. Coordin Chem Rev, 2006, 250(5-6): 602-626. doi:10.1016/j.ccr.2005.07.010http://dx.doi.org/10.1016/j.ccr.2005.07.010
Shannon R D. Acta Crystallogr A, 1976, 32(5): 751-767. doi:10.1107/s0567739476001551http://dx.doi.org/10.1107/s0567739476001551
Bochkarev M N, Zakharov L N, Kalinina G S. Organoderivatives of Rare Earth Elements. Dordrecht: Kluwer Academic Publishers, 1995. doi:10.1007/978-94-011-0361-9http://dx.doi.org/10.1007/978-94-011-0361-9
Egorova K S, Ananikov V P. Organometallics, 2017, 36(21): 4071-4090. doi:10.1021/acs.organomet.7b00605http://dx.doi.org/10.1021/acs.organomet.7b00605
Wu J, Yu T, Chen C, Lin C. Coord Chem Rev, 2006, 250(5-6): 602-626. doi:10.1016/j.ccr.2005.07.010http://dx.doi.org/10.1016/j.ccr.2005.07.010
Platel R H, Hodgson L M, Williams C K. Polym Rev (Phila Pa), 2008, 48(1): 11-63. doi:10.1080/15583720701834166http://dx.doi.org/10.1080/15583720701834166
Penczek S, Cypryk M, Duda A, Kubisa P, Slomkowski S. Prog Polym Sci, 2007, 32(2): 247-282. doi:10.1016/j.progpolymsci.2007.01.002http://dx.doi.org/10.1016/j.progpolymsci.2007.01.002
Gupta A P, Kumar V. Eur Polym J, 2007, 43(10): 4053-4074. doi:10.1016/j.eurpolymj.2007.06.045http://dx.doi.org/10.1016/j.eurpolymj.2007.06.045
Cheng M, Attygalle A B, Lobkovsky E B, Coates G W. J Am Chem Soc, 1999, 121(49): 11583-11584. doi:10.1021/ja992678ohttp://dx.doi.org/10.1021/ja992678o
Chamberlain B M, Cheng M, Moore D R, Ovitt T M, Lobkovsky E B, Coates G W. J Am Chem Soc, 2001, 123(14): 3229-3238. doi:10.1021/ja003851fhttp://dx.doi.org/10.1021/ja003851f
Rosen T, Goldberg I, Navarra W, Venditto V, Kol M. Angew Chem Int Ed, 2018, 57(24): 7191-7195. doi:10.1002/anie.201803063http://dx.doi.org/10.1002/anie.201803063
Stanford M J, Dove A P. Chem Soc Rev, 2010, 39(2): 486-494. doi:10.1039/b815104khttp://dx.doi.org/10.1039/b815104k
Hormnirun P, Marshall E L, Gibson V C, White A J P, Williams D J. J Am Chem Soc, 2004, 126(9): 2688-2689. doi:10.1021/ja038757ohttp://dx.doi.org/10.1021/ja038757o
Hormnirun P, Marshall E L, Gibson V C, Pugh R I, White A J P. P Natl Acad Sci USA, 2006, 103(42): 15343-15348. doi:10.1073/pnas.0602765103http://dx.doi.org/10.1073/pnas.0602765103
Borner J, Vieira Idos S, Pawlis A, Doring A, Kuckling D, Herres-Pawlis S. Chem Eur J, 2011, 17(16): 4507-4512. doi:10.1002/chem.201002690http://dx.doi.org/10.1002/chem.201002690
Beament J, Mahon M F, Buchard A, Jones M D. New J Chem, 2017, 41(5): 2198-2203. doi:10.1039/c6nj03844ahttp://dx.doi.org/10.1039/c6nj03844a
Maudoux N, Roisnel T, Dorcet V, Carpentier J F, Sarazin Y. Chem Eur J, 2014, 20(20): 6131-6147. doi:10.1002/chem.201304788http://dx.doi.org/10.1002/chem.201304788
Liu H, Shi X. Inorg Chem, 2021, 60(2): 705-717. doi:10.1021/acs.inorgchem.0c02741http://dx.doi.org/10.1021/acs.inorgchem.0c02741
Horeglad P, Szczepaniak G, Dranka M, Zachara J. Chem Commun, 2012, 48(8): 1171-1173. doi:10.1039/c2cc16072bhttp://dx.doi.org/10.1039/c2cc16072b
Brulé E, Gaillard S, Rager M N, Roisnel T, Guérineau V, Nolan S P, Thomas C M. Organometallics, 2011, 30(10): 2650-2653. doi:10.1021/om200271qhttp://dx.doi.org/10.1021/om200271q
Fliedel C, Vila-Viçosa D, Calhorda M J, Dagorne S, Avilés T. ChemCatChem, 2014: 1357-1367. doi:10.1002/cctc.201490032http://dx.doi.org/10.1002/cctc.201490032
Arbaoui A, Redshaw C. Polym Chem, 2010, 1(6): 801-826. doi:10.1039/b9py00334ghttp://dx.doi.org/10.1039/b9py00334g
Pan Y, Jiang X, So Y M, To C T, He G. Catalysts, 2020, 10(1): 71. doi:10.3390/catal10010071http://dx.doi.org/10.3390/catal10010071
Zhang M, Ni X, Shen Z. Organometallics, 2014, 33(23): 6861-6867. doi:10.1021/om500930mhttp://dx.doi.org/10.1021/om500930m
Liu B, Roisnel T, Maron L, Carpentier J F, Sarazin Y. Chem Eur J, 2013, 19(12): 3986-3994. doi:10.1002/chem.201204340http://dx.doi.org/10.1002/chem.201204340
Aluthge D C, Patrick B O, Mehrkhodavandi P. Chem Commun, 2013, 49(39): 4295-4297. doi:10.1039/c2cc33519khttp://dx.doi.org/10.1039/c2cc33519k
Roukoss C, Fiddy S, de Mallmann A, Rendon N, Basset J M, Kuntz E, Coperet C. Dalton Trans, 2007, 47: 5546-5548. doi:10.1039/b711015dhttp://dx.doi.org/10.1039/b711015d
Xiong J, Zhang J, Sun Y, Dai Z, Pan X, Wu J. Inorg Chem, 2015, 54(4): 1737-1743. doi:10.1021/ic502685fhttp://dx.doi.org/10.1021/ic502685f
Zhang J, Xiong J, Sun Y, Tang N, Wu J. Macromolecules, 2014, 47(22): 7789-7796. doi:10.1021/ma502000yhttp://dx.doi.org/10.1021/ma502000y
Dai Z, Sun Y, Xiong J, Pan X, Wu J. ACS Macro Lett, 2015, 4(5): 556-560. doi:10.1021/acsmacrolett.5b00209http://dx.doi.org/10.1021/acsmacrolett.5b00209
Cui Y, Chen C, Sun Y, Wu J, Pan X. Inorg Chem Front, 2017, 4(2): 261-269. doi:10.1039/c6qi00449khttp://dx.doi.org/10.1039/c6qi00449k
Harinath A, Bhattacharjee J, Sarkar A, Panda T K. New J Chem, 2019, 43(23): 8882-8891. doi:10.1039/c9nj01130ghttp://dx.doi.org/10.1039/c9nj01130g
Chisholm M H, Gallucci J, Phomphrai K. Chem Commun, 2003, 1: 48-49. doi:10.1039/b208679dhttp://dx.doi.org/10.1039/b208679d
Clark L, Deacon G B, Forsyth C M, Junk P C, Mountford P, Townley J P, Wang J. Dalton Trans, 2013, 42(25): 9294-9312. doi:10.1039/c3dt00065fhttp://dx.doi.org/10.1039/c3dt00065f
Nifant'Ev I, Shlyakhtin A, Bagrov V, Minyaev M, Churakov A, Karchevsky S, Birin K, Ivchenko P. Dalton Trans, 2017, 46(36): 12132-12146. doi:10.1039/c7dt02469jhttp://dx.doi.org/10.1039/c7dt02469j
Hu J, Kan C, Wang H, Ma H. Macromolecules, 2018, 51(14): 5304-5312. doi:10.1021/acs.macromol.8b00924http://dx.doi.org/10.1021/acs.macromol.8b00924
Collins R A, Unruangsri J, Mountford P. Dalton Trans, 2013, 42(3): 759-769. doi:10.1039/c2dt32151chttp://dx.doi.org/10.1039/c2dt32151c
Bhattacharjee J, Harinath A, Nayek H P, Sarkar A, Panda T K. Chem Eur J, 2017, 23(39): 9319-9331. doi:10.1002/chem.201700672http://dx.doi.org/10.1002/chem.201700672
Kottalanka R K, Adimulam H, Bhattacharjee J, Babu H V, Panda T K. Dalton Trans, 2014, 43(23): 8757-8766. doi:10.1039/c4dt00669khttp://dx.doi.org/10.1039/c4dt00669k
Lyubov D M, Tolpygin A O, Trifonov A A. Coord Chem Rev, 2019, 392: 83-145. doi:10.1016/j.ccr.2019.04.013http://dx.doi.org/10.1016/j.ccr.2019.04.013
Shen Ting(沈婷), Ni Xufeng(倪旭峰), Ling Jun(凌君). Acta Polymerica Sinica(高分子学报), 2021, 52(5): 445-455. doi:10.11777/j.issn1000-3304.2020.20267http://dx.doi.org/10.11777/j.issn1000-3304.2020.20267
Wang F, Liu L J, Wang W, Li S, Shi M. Coord Chem Rev, 2012, 256(9-10): 804-853. doi:10.1016/j.ccr.2011.11.013http://dx.doi.org/10.1016/j.ccr.2011.11.013
Fliedel C, Labande A, Manoury E, Poli R. Coord Chem Rev, 2019, 394: 65-103. doi:10.1016/j.ccr.2019.05.003http://dx.doi.org/10.1016/j.ccr.2019.05.003
Zhao Q, Meng G, Nolan S P, Szostak M. Chem Rev, 2020, 120(4): 1981-2048. doi:10.1021/acs.chemrev.9b00634http://dx.doi.org/10.1021/acs.chemrev.9b00634
Grossmann A, Enders D. Angew Chem Int Ed, 2012, 51(2): 314-325. doi:10.1002/anie.201105415http://dx.doi.org/10.1002/anie.201105415
Naumann S, Dove A P. Polym Int, 2016, 65(1): 16-27. doi:10.1002/pi.5034http://dx.doi.org/10.1002/pi.5034
Enders D, Niemeier O, Henseler A. Chem Rev, 2007, 107(12): 5606-5655. doi:10.1021/cr068372zhttp://dx.doi.org/10.1021/cr068372z
Wang Z Y, Xu G Q, Zhou L, Lv C D, Yang R L, Dong B Z, Wang Q G. Chinese J Polym Sci, 2021, 39(6): 709-715
Milanovic S D, Pejic B J, Lazic V L, Konstantinovic B B, Blagojevic M N. Hem Ind, 2017, 71(1): 85-94. doi:10.2298/hemind140623067mhttp://dx.doi.org/10.2298/hemind140623067m
Slomkowski S, Penczek S, Duda A. Polym Adv Technol, 2014, 25(5): 436-447. doi:10.1002/pat.3281http://dx.doi.org/10.1002/pat.3281
Kallrot M, Edlund U, Albertsson A C. Biomacromolecules, 2007, 8(8): 2492-2496. doi:10.1021/bm700442jhttp://dx.doi.org/10.1021/bm700442j
Nagarajan V, Mohanty A K, Misra M. ACS Sustain Chem Eng, 2016, 4(6): 2899-2916. doi:10.1021/acssuschemeng.6b00321http://dx.doi.org/10.1021/acssuschemeng.6b00321
Muthuraj R, Misra M, Mohanty A K. J Appl Polym Sci, 2017, 135(24): 45726. doi:10.1002/app.45726http://dx.doi.org/10.1002/app.45726
Sangeetha V H, Deka H, Varghese T O, Nayak S K. Polym Compos, 2018, 39(1): 81-101. doi:10.1002/pc.23906http://dx.doi.org/10.1002/pc.23906
Nomura N, Akita A, Ishii R, Mizuno M. J Am Chem Soc, 2010, 132(6): 1750-1751. doi:10.1021/ja9089395http://dx.doi.org/10.1021/ja9089395
D'Auria I, Lamberti M, Rescigno R, Venditto V, Mazzeo M. Heliyon, 2021, 7(7): e07630. doi:10.1016/j.heliyon.2021.e07630http://dx.doi.org/10.1016/j.heliyon.2021.e07630
Hermann A, Hill S, Metz A, Heck J, Hoffmann A, Hartmann L, Herres-Pawlis S. Angew Chem Int Ed, 2020, 59(48): 21778-21784. doi:10.1002/anie.202008473http://dx.doi.org/10.1002/anie.202008473
Zhou X, Hong L. Colloid Polym Sci, 2013, 291(9): 2155-2162. doi:10.1007/s00396-013-2950-9http://dx.doi.org/10.1007/s00396-013-2950-9
Upitak K, Wattanathana W, Nanok T, Chuawong P, Hormnirun P. Dalton Trans, 2021, 50(31): 10964-10981. doi:10.1039/d1dt01470fhttp://dx.doi.org/10.1039/d1dt01470f
Gilmour D J, Webster R L, Perry M R, Schafer L L. Dalton Trans, 2015, 44(27): 12411-12419. doi:10.1039/c5dt01162khttp://dx.doi.org/10.1039/c5dt01162k
Hatamzadeh M, Sarvari R, Massoumi B, Agbolaghi S, Samadian F. Int J Polym Mater, 2020, 69(17): 1112-1122. doi:10.1080/00914037.2019.1667800http://dx.doi.org/10.1080/00914037.2019.1667800
Zhang H, Zhang Q, Cai Q, Luo Q, Li X, Li X, Zhang K, Zhu W. Chem Eng J, 2021, 424: 130432. doi:10.1016/j.cej.2021.130432http://dx.doi.org/10.1016/j.cej.2021.130432
Della Monica F, Maity B, Pehl T, Buonerba A, De Nis A, Monari M, Grassi A, Rieger B, Cavallo L, Capacchione C. ACS Catal, 2018, 8(8): 6882-6893. doi:10.1021/acscatal.8b01695http://dx.doi.org/10.1021/acscatal.8b01695
Lu X B, Ren W M, Wu G P. Acc Chem Res, 2012, 45(10): 1721-1735. doi:10.1021/ar300035zhttp://dx.doi.org/10.1021/ar300035z
Shi Z, Jiang Q, Song Z, Wang Z, Gao C. Polym Chem, 2018, 9(38): 4733-4743. doi:10.1039/c8py00824hhttp://dx.doi.org/10.1039/c8py00824h
Xia W, Vagin S I, Rieger B. Chem Eur J, 2014, 20(47): 15499-15504. doi:10.1002/chem.201404147http://dx.doi.org/10.1002/chem.201404147
Chen C, Gnanou Y, Feng X. Macromolecules, 2021, 54(20): 9474-9481. doi:10.1021/acs.macromol.1c01460http://dx.doi.org/10.1021/acs.macromol.1c01460
Chukanova O M, Korenkov K O, Garifullin N O, Sheverdenkina O G, Sedov I V. Kinet Catal 2020, 61(4): 569-574. doi:10.1134/s0023158420030088http://dx.doi.org/10.1134/s0023158420030088
Nakabayashi Y, Nakano K. Polym J, 2021, 53(1): 203-208. doi:10.1038/s41428-020-00423-5http://dx.doi.org/10.1038/s41428-020-00423-5
Yang G W, Xu C K, Xie R, Zhang Y Y, Zhu X F, Wu G P. J Am Chem Soc, 2021, 143(9): 3455-3465. doi:10.1021/jacs.0c12425http://dx.doi.org/10.1021/jacs.0c12425
Arbaoui A, Redshaw C, Homden D M, Wright J A, Elsegood M R J. Dalton Trans, 2009, 41: 8911-8922. doi:10.1039/b902402fhttp://dx.doi.org/10.1039/b902402f
Abbina S, Chidara V K, Bian S, Ugrinov A, Du G. Chemistry-Select, 2016, 1(12): 3175-3183. doi:10.1002/slct.201600581http://dx.doi.org/10.1002/slct.201600581
Kember M R, Williams C K. J Am Chem Soc, 2012, 134(38): 15676-15679. doi:10.1021/ja307096mhttp://dx.doi.org/10.1021/ja307096m
Della Monica F, Buonerba A, Capacchione C. Adv Synth Catal, 2019, 361(2): 265-282. doi:10.1002/adsc.201801281http://dx.doi.org/10.1002/adsc.201801281
Zhang D, Zhang H, Hadjichristidis N, Gnanou Y, Feng X. Macromolecules, 2016, 49(7): 2484-2492. doi:10.1021/acs.macromol.6b00203http://dx.doi.org/10.1021/acs.macromol.6b00203
Bonduelle C, Martin-Vaca B, Cossio F P, Bourissou D. Chem Eur J, 2008, 14(17): 5304-5312. doi:10.1002/chem.200800346http://dx.doi.org/10.1002/chem.200800346
Du Boullay O T, Bonduelle C, Martin-Vaca B, Bourissou D. Chem Commun, 2008, 15: 1786-1788
Yin Q, Tong R, Xu Y X, Baek K, Dobrucki L W, Fan T M, Cheng J J. Biomacromolecules, 2013, 14(3): 920-929. doi:10.1021/bm301999chttp://dx.doi.org/10.1021/bm301999c
Jia F, Chen X Y, Zheng Y, Qin Y S, Tao Y H, Wang X H. Chem Commun, 2015, 51(40): 8504-8507. doi:10.1039/c5cc01329ahttp://dx.doi.org/10.1039/c5cc01329a
Feng Q Y, Zhong Y L, Xie L H, Tong R. Synlett, 2017, 28(15): 1857-1866
Zhong Y L, Feng Q Y, Wang X Q, Yang L, Korovich A G, Madsen L A, Tong R. Chem Sci, 2021, 12(10): 3702-3712. doi:10.1039/d0sc05550fhttp://dx.doi.org/10.1039/d0sc05550f
Zhong Y L, Feng Q Y, Wang X Q, Chen J, Cai W J, Tong R. ACS Macro Lett, 2020, 9(8): 1114-1118. doi:10.1021/acsmacrolett.0c00364http://dx.doi.org/10.1021/acsmacrolett.0c00364
Wang R, Zhang J, Yin Q, Xu Y, Cheng J, Tong R. Angew Chem Int Ed, 2016, 55(42): 13010-13014. doi:10.1002/anie.201605508http://dx.doi.org/10.1002/anie.201605508
Feng Q, Tong R. J Am Chem Soc, 2017, 139(17): 6177-6182. doi:10.1021/jacs.7b01462http://dx.doi.org/10.1021/jacs.7b01462
Sun Y, Jia Z, Chen C, Cong Y, Mao X, Wu J. J Am Chem Soc, 2017, 139(31): 10723-10732. doi:10.1021/jacs.7b04712http://dx.doi.org/10.1021/jacs.7b04712
Chen X, Lai H, Xiao C, Tian H, Chen X, Tao Y, Wang X. Polym Chem, 2014, 5(22): 6495-6502. doi:10.1039/c4py00930dhttp://dx.doi.org/10.1039/c4py00930d
Cui Y, Jiang J, Pan X, Wu J. Chem Commun, 2019, 55(86): 12948-12951. doi:10.1039/c9cc06108hhttp://dx.doi.org/10.1039/c9cc06108h
Gentile P, Chiono V, Carmagnola I, Hatton P V. Int J Mol Sci, 2014, 15(3): 3640-3659. doi:10.3390/ijms15033640http://dx.doi.org/10.3390/ijms15033640
Kiesewetter M K, Shin E J, Hedrick J L, Waymouth R M. Macromolecules, 2010, 43(5): 2093-2107. doi:10.1021/ma9025948http://dx.doi.org/10.1021/ma9025948
Thomas C, Bibal B. Green Chem, 2014, 16(4): 1687-1699. doi:10.1039/c3gc41806ehttp://dx.doi.org/10.1039/c3gc41806e
Ottou W N, Sardon H, Mecerreyes D, Vignolle J, Taton D. Prog Polym Sci, 2016, 56: 64-115. doi:10.1016/j.progpolymsci.2015.12.001http://dx.doi.org/10.1016/j.progpolymsci.2015.12.001
Hu S, Zhao J, Zhang G, Schlaad H. Prog Polym Sci, 2017, 74: 34-77. doi:10.1016/j.progpolymsci.2017.07.002http://dx.doi.org/10.1016/j.progpolymsci.2017.07.002
Nederberg F, Connor E F, Moller M, Glauser T, Hedrick J L. Angew Chem Int Ed, 2001, 40(14): 2712-2715. doi:10.1002/1521-3773(20010716)40:14<2712::aid-anie2712>3.0.co;2-zhttp://dx.doi.org/10.1002/1521-3773(20010716)40:14<2712::aid-anie2712>3.0.co;2-z
Dove A P, Pratt R C, Lohmeijer B G G, Waymouth R M, Hedrick J L. J Am Chem Soc, 2005, 127(40): 13798-13799. doi:10.1021/ja0543346http://dx.doi.org/10.1021/ja0543346
Zhu J B, Chen E Y X. J Am Chem Soc, 2015, 137(39): 12506-12509. doi:10.1021/jacs.5b08658http://dx.doi.org/10.1021/jacs.5b08658
Thomas C, Milet A, Peruch F, Bibal B. Polym Chem, 2013, 4(12): 3491-3498. doi:10.1039/c3py00304chttp://dx.doi.org/10.1039/c3py00304c
Zhang L, Pratt R C, Nederberg F, Horn H W, Rice J E, Waymouth R M, Wade C G, Hedrick J L. Macromolecules, 2010, 43(3): 1660-1664. doi:10.1021/ma901776xhttp://dx.doi.org/10.1021/ma901776x
Ren C, Zhu X, Zhao N, Shen Y, Chen L, Liu S, Li Z. Eur Polym J, 2019, 119: 130-135. doi:10.1016/j.eurpolymj.2019.07.022http://dx.doi.org/10.1016/j.eurpolymj.2019.07.022
Shi J, Zhao N, Xia S, Liu S, Li Z. Polym Chem, 2019, 10(17): 2126-2133. doi:10.1039/c9py00247bhttp://dx.doi.org/10.1039/c9py00247b
Myers M, Connor E F, Glauser T, Möck A, Nyce G, Hedrick J L. J Polym Sci, Part A: Polym Chem, 2002, 40(7): 844-851. doi:10.1002/pola.10168http://dx.doi.org/10.1002/pola.10168
Lou X, Detrembleur C, Jérôme R. Macromolecules, 2002, 35(4): 1190-1195. doi:10.1021/ma0113677http://dx.doi.org/10.1021/ma0113677
Shibasaki Y, Sanada H, Yokoi M, Sanda F, Endo T. Macromolecules, 2000, 33(12): 4316-4320. doi:10.1021/ma992138bhttp://dx.doi.org/10.1021/ma992138b
Persson P V, Schröder J, Wickholm K, Hedenström E, Iversen T. Macromolecules, 2004, 37(16): 5889-5893. doi:10.1021/ma049562jhttp://dx.doi.org/10.1021/ma049562j
Persson P V, Casas J, Iversen T, Córdova A. Macromolecules, 2006, 39(8): 2819-2822. doi:10.1021/ma0521710http://dx.doi.org/10.1021/ma0521710
Casas J, Persson P V, Iversen T, Cordova A. Adv Synth Catal, 2004, 346(9-10): 1087-1089. doi:10.1002/adsc.200404082http://dx.doi.org/10.1002/adsc.200404082
Wheaton C A, Hayes P G. Comments Mod Chem A Comments Inorg Chem, 2011, 32(3): 127-162. doi:10.1080/02603594.2011.634037http://dx.doi.org/10.1080/02603594.2011.634037
Gazeau-Bureau S, Delcroix D, Martín-Vaca B, Bourissou D, Navarro C, Magnet S. Macromolecules, 2008, 41(11): 3782-3784. doi:10.1021/ma800626qhttp://dx.doi.org/10.1021/ma800626q
Jin Y, Ji Y, He X, Kan S, Xia H, Liang B, Chen J, Wu H, Guo K, Li Z. Polym Chem, 2014, 5(8): 3098-3106. doi:10.1039/c3py01613ghttp://dx.doi.org/10.1039/c3py01613g
Wu H, Ji Y, Li Z, Wang X, Zhang Q, Cui S, Wu W, Liu J, Guo K. J Polym Sci, Part A: Polym Chem, 2015, 53(6): 729-736. doi:10.1002/pola.27496http://dx.doi.org/10.1002/pola.27496
Makiguchi K, Satoh T, Kakuchi T. Macromolecules, 2011, 44(7): 1999-2005. doi:10.1021/ma200043xhttp://dx.doi.org/10.1021/ma200043x
Miao Y, Phuphuak Y, Rousseau C, Bousquet T, Mortreux A, Chirachanchai S, Zinck P. J Polym Sci, Part A: Polym Chem, 2013, 51(10): 2279-2287. doi:10.1002/pola.26612http://dx.doi.org/10.1002/pola.26612
Liu J J, Zhang C, Li Z J, Zhang L, Xu J X, Wang H X, Xu S Q, Guo T F, Yang K, Guo K. Eur Polym J, 2019, 113: 197-207. doi:10.1016/j.eurpolymj.2019.01.057http://dx.doi.org/10.1016/j.eurpolymj.2019.01.057
Liu J, Cui S, Li Z, Xu S, Xu J, Pan X, Liu Y, Dong H, Sun H, Guo K. Polym Chem, 2016, 7(35): 5526-5535. doi:10.1039/c6py01210hhttp://dx.doi.org/10.1039/c6py01210h
Kan S, Jin Y, He X, Chen J, Wu H, Ouyang P, Guo K, Li Z. Polym Chem, 2013, 4(21): 5432-5439. doi:10.1039/c3py00667khttp://dx.doi.org/10.1039/c3py00667k
Mezzasalma L, Harrisson S, Saba S, Loyer P, Coulembier O, Taton D. Biomacromolecules, 2019, 20(5): 1965-1974. doi:10.1021/acs.biomac.9b00190http://dx.doi.org/10.1021/acs.biomac.9b00190
Zhang J, Xu L, Xiao W, Chen Y, Dong Z, Xu J, Lei C. Eur Polym J, 2021, 157: 110643. doi:10.1016/j.eurpolymj.2021.110643http://dx.doi.org/10.1016/j.eurpolymj.2021.110643
Schwesinger R, Hasenfratz C, Schlemper H, Walz L, Peters E M, Peters K, von Schnering H G. Angew Chem Int Ed Engl, 1993, 32(9): 1361-1363. doi:10.1002/anie.199313611http://dx.doi.org/10.1002/anie.199313611
Shen Yong(沈勇), Li Zhibo(李志波). Acta Polymerica Sinica (高分子学报), 2020, 51(8): 777-790. doi:10.11777/j.issn1000-3304.2020.20050http://dx.doi.org/10.11777/j.issn1000-3304.2020.20050
Liu S, Li H, Zhao N, Li Z. ACS Macro Lett, 2018, 7(6): 624-628. doi:10.1021/acsmacrolett.8b00353http://dx.doi.org/10.1021/acsmacrolett.8b00353
Lin B, Waymouth R M. J Am Chem Soc, 2017, 139(4): 1645-1652. doi:10.1021/jacs.6b11864http://dx.doi.org/10.1021/jacs.6b11864
Lin B, Waymouth R M. Macromolecules, 2018, 51(8): 2932-2938. doi:10.1021/acs.macromol.8b00540http://dx.doi.org/10.1021/acs.macromol.8b00540
Zhang X, Jones G O, Hedrick J L, Waymouth R M. Nat Chem, 2016, 8(11): 1047-1053. doi:10.1038/nchem.2574http://dx.doi.org/10.1038/nchem.2574
Yuan R, Xu G, Lv C, Zhou L, Yang R, Wang Q. Mater Today Commun, 2020, 22: 100747. doi:10.1016/j.mtcomm.2019.100747http://dx.doi.org/10.1016/j.mtcomm.2019.100747
Goldys A M, Dixon D J. Macromolecules, 2014, 47(4): 1277-1284. doi:10.1021/ma402258yhttp://dx.doi.org/10.1021/ma402258y
Lalanne-Tisne M, Mees M A, Eyley S, Zinck P, Thielemans W. Carbohydr Polym, 2020, 250: 116974. doi:10.1016/j.carbpol.2020.116974http://dx.doi.org/10.1016/j.carbpol.2020.116974
Miao Y, Rousseau C, Mortreux A, Martin P, Zinck P. Polymer, 2011, 52(22): 5018-5026. doi:10.1016/j.polymer.2011.08.040http://dx.doi.org/10.1016/j.polymer.2011.08.040
Ding Q, Fan X, Wu J. Curr Org Chem, 2014, 18(6): 700-718. doi:10.2174/1385272819666140201003238http://dx.doi.org/10.2174/1385272819666140201003238
Connor E F, Nyce G W, Myers M, Möck A, Hedrick J L. J Am Chem Soc, 2002, 124(6): 914-915. doi:10.1021/ja0173324http://dx.doi.org/10.1021/ja0173324
Bai J, Wu N, Wang Y, Li Q, Wang X, Zhang L. RSC Adv, 2016, 6(109): 108045-108050. doi:10.1039/c6ra24042ahttp://dx.doi.org/10.1039/c6ra24042a
Kaluzynski K, Pretula J, Lewinski P, Kaźmierski S, Penczek S. J Catal, 2020, 392: 97-107. doi:10.1016/j.jcat.2020.09.026http://dx.doi.org/10.1016/j.jcat.2020.09.026
Zhang D, Boopathi S K, Hadjichristidis N, Gnanou Y, Feng X. J Am Chem Soc, 2016, 138(35): 11117-11120. doi:10.1021/jacs.6b06679http://dx.doi.org/10.1021/jacs.6b06679
Andrea K A, Kerton F M. ACS Catal, 2019, 9(3): 1799-1809. doi:10.1021/acscatal.8b04282http://dx.doi.org/10.1021/acscatal.8b04282
Alves M, Grignard B, Boyaval A, Mereau R, De Winter J, Gerbaux P, Detrembleur C, Tassaing T, Jerome C. ChemSusChem, 2017, 10(6): 1128-1138. doi:10.1002/cssc.201601185http://dx.doi.org/10.1002/cssc.201601185
Li M S, Tao Y, Tang J D, Wang Y C, Zhang X Y, Tao Y H, Wang X H. J Am Chem Soc, 2019, 141(1): 281-289. doi:10.1021/jacs.8b09739http://dx.doi.org/10.1021/jacs.8b09739
Chen Ye(陈烨), Liu Shan(刘珊), Zhao Junpeng(赵俊鹏). Acta Polymerica Sinica(高分子学报), 2020, 51(10): 1067-1082. doi:10.11777/j.issn1000-3304.2020.20088http://dx.doi.org/10.11777/j.issn1000-3304.2020.20088
Longo J M, Sanford M J, Coates G W. Chem Rev, 2016, 116(24): 15167-15197. doi:10.1021/acs.chemrev.6b00553http://dx.doi.org/10.1021/acs.chemrev.6b00553
Paul S, Zhu Y, Romain C, Brooks R, Saini P K, Williams C K. Chem Commun, 2015, 51(30): 6459-6479. doi:10.1039/c4cc10113hhttp://dx.doi.org/10.1039/c4cc10113h
van Zee N J, Coates G W. Angew Chem, 2015, 127(9): 2703-2706. doi:10.1002/ange.201410641http://dx.doi.org/10.1002/ange.201410641
Ji H Y, Chen X L, Wang B, Pan L, Li Y S. Green Chem, 2018, 20(17): 3963-3973. doi:10.1039/c8gc01641khttp://dx.doi.org/10.1039/c8gc01641k
Hošťálek Z, Trhlíková O, Walterová Z, Martinez T, Peruch F, Cramail H, Merna J. Eur Polym J, 2017, 88: 433-447. doi:10.1016/j.eurpolymj.2017.01.002http://dx.doi.org/10.1016/j.eurpolymj.2017.01.002
Yoshizawa-Fujita M, Kakegawara Y, Takeoka Y, Rikukawa M. Kobunshi Ronbunshu, 2013, 70(10): 612-615. doi:10.1295/koron.70.612http://dx.doi.org/10.1295/koron.70.612
Kobayashi S, Makino A, Matsumoto H, Kunii S, Ohmae M, Kiyosada T, Makiguchi K, Matsumoto A, Horie M, Shoda S I. Biomacromolecules, 2006, 7(5): 1644-1656. doi:10.1021/bm060094qhttp://dx.doi.org/10.1021/bm060094q
Zhang J X, Shi H, Wu D, Xing Z, Zhang A J, Yang Y, Li Q S. Process Biochem, 2014, 49(5): 797-806. doi:10.1016/j.procbio.2014.02.006http://dx.doi.org/10.1016/j.procbio.2014.02.006
0
Views
288
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution