In order to solve the problems that microcracks occurring in solid electrolyte which may affect the cycling performance and capacity of lithium-ion battery
a self-healing solid-state polymer electrolyte was prepared based on the combination of a poly(NBPEO-
b
-NBZwit) network
imidazole-based ionic liquid (EMITFSI) and LiTFSI. In this work
polymers with different proportions of NBPEO and NBZwit were prepared
and their self-healing and electrochemical properties were studied. The PEO component endows the polymer with good lithium ion transport capacity
while the zwitterionic ions realize self-healing through ion coupling.
At the same time
because the polymer was mixed with ionic liquid
the interaction between zwitterionic groups and ionic liquid further improves the repair efficiency of SHPE2. The results of mechanical tensile tests showed that the healing efficiency of the mechanical strength reached 91.4% after healing at 60 ℃ for 10 h. Due to the plasticization of ionic liquid and the dissociation of zwitterions to lithium ions
its ionic conductivity can reach up to 7.42×10
-5
S·cm
-1
at room temperature. The results of electrochemical performance tests shows that the electrochemical window of SHPE2 reached 5.0 V versus Li/Li
+
because of the existence of norbornene skeleton. The discharge specific capacity of the lithium metal battery assembled by SHPE2 is 124.3 mAh·g
-1
. The lithium metal battery assembled by healed SHPE2 can still maintain the discharge specific capacity of 123.2 mAh·g
-1
after 50 cycles with a coulombic efficiency of 99.17%. The polymer containing PEO side chain and zwitterion was prepared by ring opening polymerization
which provides a scheme for the design of self-healing polymer electrolyte materials.
Reddy M V, Mauger A, Julien C M, Paolella A, Zaghib K. Materials, 2020, 13(8): 1884. doi:10.3390/ma13081884http://dx.doi.org/10.3390/ma13081884
Jaumaux P, Liu Q, Zhou D, Xu , Wang T, Wang Y, Kang F, Li B, Wang G. Angew Chem Int Ed, 2020, 59(23): 9134-9142. doi:10.1002/anie.202001793http://dx.doi.org/10.1002/anie.202001793
Zhang D, Ren Y, Hu Y, Li L, Yan F. Chinese J Polym Sci, 2020, 38(5): 506-513. doi:10.1007/s10118-020-2390-1http://dx.doi.org/10.1007/s10118-020-2390-1
JrHallinan D T, Balsara N P. Polym Electrolytes, 2013, 41(1): 503-525. doi:10.1146/annurev-matsci-071312-121705http://dx.doi.org/10.1146/annurev-matsci-071312-121705
Cao C, Li Y, Feng Y, Peng C, Li Z, Feng W. Energy Storage Mater, 2019, 19: 401-407. doi:10.1016/j.ensm.2019.03.004http://dx.doi.org/10.1016/j.ensm.2019.03.004
Feng X, Liu Q, Zheng J, Xu Y, Chen W. Compos Commun, 2022, 29: 101026. doi:10.1016/j.coco.2021.101026http://dx.doi.org/10.1016/j.coco.2021.101026
Zhang L, Zhang P, Chang C, Guo W, Guo Z H, Pu X. ACS Appl Mater Interfaces, 2021, 13(39): 46794-46802. doi:10.1021/acsami.1c14462http://dx.doi.org/10.1021/acsami.1c14462
Xiao J, Li Q, Bi Y, Cai M, Dunn B, Glossmann T, Liu J, Osaka T, Sugiura R, Wu B, Yang J, Zhang J, Whittingham M S. Nat Energy, 2020, 5(8): 561-568. doi:10.1038/s41560-020-0648-zhttp://dx.doi.org/10.1038/s41560-020-0648-z
Varshney P K, Gupta S. Ionics, 2011, 17(6): 479-483. doi:10.1007/s11581-011-0563-1http://dx.doi.org/10.1007/s11581-011-0563-1
Tian X, Yang P, Yi Y, Liu P, Wang T, Shu C, Qu L, Tang W, Zhang Y, Li M, Yang, B. J Power Sources, 2020, 450: 227629. doi:10.1016/j.jpowsour.2019.227629http://dx.doi.org/10.1016/j.jpowsour.2019.227629
Xu J, Ding C, Chen P, Tan L, Chen C, Fu J. Appl Phys Rev, 2020, 7(3): 031304. doi:10.1063/5.0008206http://dx.doi.org/10.1063/5.0008206
Whittingham M S. Science (New York, NY), 1976, 192(4244): 1126-1127. doi:10.1126/science.192.4244.1126http://dx.doi.org/10.1126/science.192.4244.1126
Brown N R, Makkapati T, Teeters D. Solid State Ionics, 2016, 288: 207-212. doi:10.1016/j.ssi.2016.02.011http://dx.doi.org/10.1016/j.ssi.2016.02.011
Karmakar A, Ghosh A. J Appl Phys, 2010, 107(10): 183. doi:10.1063/1.3428389http://dx.doi.org/10.1063/1.3428389
Li J, Zhang P, Chen L, Li G, Chen H, Jia C, Wu Y, Chen M, Zhao X, Song P. Compos Commun, 2020, 22: 100530. doi:10.1016/j.coco.2020.100530http://dx.doi.org/10.1016/j.coco.2020.100530
Liu Ziyang(刘梓洋), Li Yang(李杨), Liu Xingjiang(刘兴江), Xu Qiang(徐强). Journal of Materials Engineering(材料工程), 2021, 49(1): 1-10. doi:10.11868/j.issn.1001-4381.2020.000194http://dx.doi.org/10.11868/j.issn.1001-4381.2020.000194
Yang F J, Liu Q F, Wu X B, He Y Y, Shu X G, Huang J. RSC Adv, 2021, 11(56): 35687-35694. doi:10.1039/d1ra04553ahttp://dx.doi.org/10.1039/d1ra04553a
Wang C, Li R, Chen P, Fu Y, Ma X, Shen T, Zhou B, Chen K, Fu J, Bao X, Yan W, Yang Y. J Mater Chem A, 2021, 9(8): 4758-4769. doi:10.1039/d0ta10745jhttp://dx.doi.org/10.1039/d0ta10745j
Sarapas J M, Saijo K, Zhao Y, Takenaka M, Tew G N. Polym Adv Technol, 2016, 27(7): 946-954. doi:10.1002/pat.3753http://dx.doi.org/10.1002/pat.3753
Zhang H, Liu C, Zheng L, Xu F, Feng W, Li H, Huang X, Armand M, Nie J, Zhou Z. Electrochim Acta, 2014, 133: 529-538. doi:10.1016/j.electacta.2014.04.099http://dx.doi.org/10.1016/j.electacta.2014.04.099
Shibuya Y, Tatara R, Jiang Y, Shao-Horn Y, Johnson J A. J Polym Sci, Part A: Polym Chem, 2019, 57(3): 448-455. doi:10.1002/pola.29242http://dx.doi.org/10.1002/pola.29242
Colak S, Tew G N. Langmuir, 2012, 28(1): 666-675. doi:10.1021/la203683uhttp://dx.doi.org/10.1021/la203683u
Maddikeri R R, Colak S, Gido S P, Tew G N. Biomacromolecules, 2011, 12(10): 3412-3417. doi:10.1021/bm2010142http://dx.doi.org/10.1021/bm2010142
Rankin D A, Lowe A B. Macromolecules, 2008, 41(3): 614-622. doi:10.1021/ma701952chttp://dx.doi.org/10.1021/ma701952c
Theodosopoulos G V, Zisis C, Charalambidis G, Nikolaou V, Coutsolelos A G, Pitsikalis M. Polymers, 2017, 9(4): 145. doi:10.3390/polym9040145http://dx.doi.org/10.3390/polym9040145
Sun H, Yu D M, Shi S, Yuan Q, Fujinami S, Sun X, Wang D, Russell T P. Macromolecules, 2019, 52(2): 592-600. doi:10.1021/acs.macromol.8b02265http://dx.doi.org/10.1021/acs.macromol.8b02265
Zheng Pengxuan(郑鹏轩), Wang Xiangwei(王向伟), Wang Dong(王栋), Yu Zhiwei(于志伟). Acta Polymerica Sinica(高分子学报), 2021, 52(1): 94-101. doi:10.11777/j.issn1000-3304.2020.20121http://dx.doi.org/10.11777/j.issn1000-3304.2020.20121
Rosenbach D, Moedl N, Hahn M, Petry J, Danzer M A, Thelakkat M. ACS Appl Energy Mater, 2019, 2(5): 3373-3388. doi:10.1021/acsaem.9b00211http://dx.doi.org/10.1021/acsaem.9b00211
Wei X Y, Shriver D F. Chem Mater, 1998, 10(9): 2307-2308. doi:10.1021/cm980170zhttp://dx.doi.org/10.1021/cm980170z
Deuterated and Ring-opening Metathesis Polymerization of Cyclooctadiene, and Solid-state Catalytic Addition of Its Polymers
Preparation and Electrochemical Performance of Polyzwitterion Containing Intramolecular Salt as Solid Electrolytes for Lithium-ion Batteries
Design, Preparation and Visual Detection of Fluorophenyl Polynorbornene Anion Exchange Membrane with Single Quaternary Ammonium Salt
Related Author
Jie Du
Meng Liu
Li-ping Wang
Biao Guo
Xin-xin Tan
Wen-hua Luo
Shu-chang Liu
Hai-ying Wu
Related Institution
Institute of Materials, China Academy of Engineering Physics
University of Science and Technology of China
CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
Department of Chemistry, Tsinghua University
College of Chemistry and Materials Science, Sichuan Normal University