浏览全部资源
扫码关注微信
材料先进技术教育部重点实验室 西南交通大学 成都 610031
Yu Bao, E-mail: baoyu@swjtu.edu.cn
Shu-xun Cui, E-mail: cuishuxun@swjtu.edu.cn
Published:20 November 2022,
Published Online:22 August 2022,
Received:22 March 2022,
Accepted:15 April 2022
移动端阅览
王海龙,单驿轩,鲍雨等.聚电解质分子量测量的单分子力谱方法[J].高分子学报,2022,53(11):1358-1364.
Wang Hai-long,Shan Yi-xuan,Bao Yu,et al.Estimating the Molecular Weight of Polyelectrolyte by Single-molecule Force Spectroscopy[J].ACTA POLYMERICA SINICA,2022,53(11):1358-1364.
王海龙,单驿轩,鲍雨等.聚电解质分子量测量的单分子力谱方法[J].高分子学报,2022,53(11):1358-1364. DOI: 10.11777/j.issn1000-3304.2022.22092.
Wang Hai-long,Shan Yi-xuan,Bao Yu,et al.Estimating the Molecular Weight of Polyelectrolyte by Single-molecule Force Spectroscopy[J].ACTA POLYMERICA SINICA,2022,53(11):1358-1364. DOI: 10.11777/j.issn1000-3304.2022.22092.
分子量是聚电解质的重要参数,然而目前测量聚电解质分子量的方法均存在一定的局限性. 本文提出了一种利用基于原子力显微镜的单分子力谱(SMFS)技术测量聚电解质分子量(链长)的新方法. 以窄分布的聚苯乙烯磺酸钠(PSSNa)为研究对象,利用SMFS技术测量了其在高真空和水环境中的分子链长度. 实验结果表明PSSNa在水中的链长统计结果明显大于在高真空中的统计结果. PSSNa是强聚电解质,在水环境中将会电离,使其在水中的构象比在高真空中更为舒展. 分子链上对应于针尖抓取点与基底吸附点的位置之间的距离相对较远. 因此PSSNa在水中得到的力-距离(
F-E
)曲线有更长的表观轮廓长度. 在水环境中获得的平均链长与蒙特卡洛(Monte Carlo)模拟结果接近. 研究结果表明对于较为刚性的聚电解质,当其构象较为伸展时(如PSSNa在稀溶液中),通过SMFS方法可估算其分子链平均长度.
Molecular weight is an important parameter of polyelectrolytes. However
there are certain limitations in each of the current methods for measuring the molecular weight of polyelectrolytes. In this work
we propose a novel method to measure the molecular weight (chain length) of polyelectrolytes by using atomic
force microscopy (AFM)-based single-molecule force spectroscopy (SMFS). The chain lengths of poly(sodium styrenesulfonate) (PSSNa) with narrow molecular weight distribution in high vacuum and water are measured. The SMFS experimental results show that the statistical result of the chain length of PSSNa in water is significantly larger than that obtained in high vacuum. PSSNa is a strong polyelectrolyte and will ionize when dissolved in water
which will lead to a more extended conformation in water than that in high vacuum. In this case
the distance between the two positions on the PSSNa chain corresponding to the gripping point of the AFM tip and the anchor point of the substrate adsorption is relatively far. Therefore
the force-extension (
F-E
) curves of PSSNa obtained in water have longer apparent contour lengths than those obtained in high vacuum. The average chain length of PSSNa obtained in water is close to the Monte Carlo simulation results. This work shows that for a rigid polyelectrolyte
when it adopts an extended conformation (such as the dissolution of PSSNa in the water environment)
SMFS can be used to roughly estimate the average length of the polymer chain.
聚电解质分子链长度单分子力谱聚苯乙烯磺酸钠
PolyelectrolyteChain lengthSingle-molecule force spectroscopyPoly(sodium styrenesulfonate)
Thomas F D, Alexander S L, Weerasooriya T, Sockalingam S. Compos Part A, 2021, 142: 106250. doi:10.1016/j.compositesa.2020.106250http://dx.doi.org/10.1016/j.compositesa.2020.106250
Rogosic M, Mencer H J, Gomzi Z. Eur Polym J, 1996, 32(11): 1337-1344
Schimmel K H, Heinrich G. Colloid Polym Sci, 1991, 269(10): 1003-1012. doi:10.1007/bf00657430http://dx.doi.org/10.1007/bf00657430
Martin J R, Johnson J F, Cooper A R. J Macromol Sci Polym Rev, 1972, 8(1): 57-199. doi:10.1080/15321797208068169http://dx.doi.org/10.1080/15321797208068169
Tuminello W H, Cudre-mauroux N. Polym Eng Sci, 1991, 31(20): 1496-1507. doi:10.1002/pen.760312009http://dx.doi.org/10.1002/pen.760312009
Gellerstedt G. Methods Lignin Chem. Berlin Heidelberg: Springer-Verlag, 1992. 487-497. doi:10.1007/978-3-642-74065-7_34http://dx.doi.org/10.1007/978-3-642-74065-7_34
Moore J C. J Polym Sci, Part A: Gen Pap, 1964, 2(2): 835-843. doi:10.1002/pol.1964.100020220http://dx.doi.org/10.1002/pol.1964.100020220
Takeda Y, Shirasaka K, Hizukuri S. Carbohydr Res, 1984, 132(1): 83-92. doi:10.1016/0008-6215(84)85066-1http://dx.doi.org/10.1016/0008-6215(84)85066-1
Lambrecht M A, Rombouts I, Van Kelst L, Delcour J A. J Chromatogr A, 2015, 1415: 100-107. doi:10.1016/j.chroma.2015.08.070http://dx.doi.org/10.1016/j.chroma.2015.08.070
O'Callaghan D, Donnelly W, Slattery H, Mulvihill D. J Liq Chromatogr Relat Technol, 1995, 18(8): 1543-1562. doi:10.1080/10826079508009294http://dx.doi.org/10.1080/10826079508009294
Mizutani A, Nagase K, Kikuchi A, Kanazawa H, Akiyama Y, Kobayashi J, Annaka M. J Chromatogr A, 2010, 1217(4): 522-529. doi:10.1016/j.chroma.2009.11.073http://dx.doi.org/10.1016/j.chroma.2009.11.073
Slootmaekers D, van Dijk J, Varkevisser F, van Treslong C B, Reynaers H. Biophys Chem, 1991, 41(1): 51-59. doi:10.1016/0301-4622(91)87209-nhttp://dx.doi.org/10.1016/0301-4622(91)87209-n
García R, Porcar I, Campos A, Soria V, Figueruelo J E. J Chromatogr A, 1993, 655(2): 191-198. doi:10.1016/0021-9673(93)83223-fhttp://dx.doi.org/10.1016/0021-9673(93)83223-f
Wang S Q, Granick S, Zhao J. J Chem Phys, 2008, 129(24): 241102. doi:10.1063/1.3055596http://dx.doi.org/10.1063/1.3055596
Ji C D, Zhou C, Zhao B T, Yang J F, Zhao J. Langmuir, 2021, 37(18): 5554-5562. doi:10.1021/acs.langmuir.1c00309http://dx.doi.org/10.1021/acs.langmuir.1c00309
Liu Ruipeng(刘瑞鹏), Zeng Xianhai(曾宪海), Sui Guohong(隋国红), Zhao Jinkai(赵金铠). Chin J Anal Lab(分析试验室), 2009, 28: 46-49
Ye M L, Han D, Shi L H. J Appl Polym Sci, 1996, 60(3): 317-322. doi:10.1002/(sici)1097-4628(19960418)60:3<317::aid-app4>3.0.co;2-ohttp://dx.doi.org/10.1002/(sici)1097-4628(19960418)60:3<317::aid-app4>3.0.co;2-o
Smith S B, Cui Y, Bustamante C. Science, 1996, 271(5250): 795-799. doi:10.1126/science.271.5250.795http://dx.doi.org/10.1126/science.271.5250.795
Liu C J, Shi W Q, Cui S X, Wang Z Q, Zhang X. Curr Opin Solid State Mater Sci, 2005, 9(3): 140-148. doi:10.1016/j.cossms.2005.09.001http://dx.doi.org/10.1016/j.cossms.2005.09.001
Smith S B, Finzi L, Bustamante C. Science, 1992, 258(5085): 1122-1126. doi:10.1126/science.1439819http://dx.doi.org/10.1126/science.1439819
Cheng B, Cui S X. Chinese J Polym Sci, 2017, 36(3): 379-384. doi:10.1007/s10118-018-2082-2http://dx.doi.org/10.1007/s10118-018-2082-2
Kotamarthi H C, Sharma R, Narayan S, Ray S, Ainavarapu S R. J Am Chem Soc, 2013, 135(39): 14768-14774. doi:10.1021/ja406238qhttp://dx.doi.org/10.1021/ja406238q
Shi S C, Wang Z Y, Deng Y B, Tian F, Wu Q S, Zheng P. CCS Chem, 2022, 4(2): 598-604. doi:10.31635/ccschem.021.202100779http://dx.doi.org/10.31635/ccschem.021.202100779
Li Y R, Cao Y. Nanoscale Adv, 2019, 1(11): 4246-4257. doi:10.1039/c9na00582jhttp://dx.doi.org/10.1039/c9na00582j
Zhang X X, Chen J L, Li E, Hu C G, Luo S Z, He C Z. Front Chem, 2020, 8: 1095-1104. doi:10.3389/fchem.2020.600918http://dx.doi.org/10.3389/fchem.2020.600918
Cui S X, Albrecht C, Kuhner F, Gaub H E. J Am Chem Soc, 2006, 128(20): 6636-6639. doi:10.1021/ja0582298http://dx.doi.org/10.1021/ja0582298
Lopez S G, Ruedas-Rama M J, Casares S, Alvarez-Pez J M, Orte A. J Phys Chem B, 2012, 116(38): 11561-11569. doi:10.1021/jp303438dhttp://dx.doi.org/10.1021/jp303438d
Scholl Z N, Li Q, Marszalek P E. Wiley Interdiscip Rev: Nanomed Nanobiotechnol, 2014, 6(3): 211-229. doi:10.1002/wnan.1253http://dx.doi.org/10.1002/wnan.1253
Bao Y, Xu D, Qian L, Zhao L, Lu Z Y, Cui S X. Nanoscale, 2017, 9(10): 3382-3385. doi:10.1039/c7nr00198chttp://dx.doi.org/10.1039/c7nr00198c
Yang L Q, Zhang L M. Carbohydr Polym, 2009, 76(3): 349-361. doi:10.1016/j.carbpol.2008.12.015http://dx.doi.org/10.1016/j.carbpol.2008.12.015
Francius G, Alsteens D, Dupres V, Lebeer S, De Keersmaecker S, Vanderleyden J, Gruber H J, Dufrene Y F. Nat Protoc, 2009, 4(6): 939-946. doi:10.1038/nprot.2009.65http://dx.doi.org/10.1038/nprot.2009.65
Cai W H, Xu D, Qian L, Wei J H, Xiao C, Qian L M, Lu Z Y, Cui S X. J Am Chem Soc, 2019, 141(24): 9500-9503. doi:10.1021/jacs.9b03490http://dx.doi.org/10.1021/jacs.9b03490
Zhang X, Liu C J, Wang Z Q. Polymer, 2008, 49(16): 3353-3361. doi:10.1016/j.polymer.2008.04.056http://dx.doi.org/10.1016/j.polymer.2008.04.056
Vera A M, Carrion-Vazquez M. Angew Chem Int Ed Engl, 2016, 55(45): 13970-13973. doi:10.1002/anie.201605284http://dx.doi.org/10.1002/anie.201605284
Al-Maawali S, Bemis J E, Akhremitchev B B, Leecharoen R, Janesko B G, Walker G C. J Phys Chem B, 2001, 105(18): 3965-3971. doi:10.1021/jp0037246http://dx.doi.org/10.1021/jp0037246
Bao Y, Luo Z L, Cui S X. Chem Soc Rev, 2020, 49(9): 2799-2827. doi:10.1039/c9cs00855ahttp://dx.doi.org/10.1039/c9cs00855a
Yang P, Song Y, Feng W, Zhang W K. Macromolecules, 2018, 51(18): 7052-7060. doi:10.1021/acs.macromol.8b01544http://dx.doi.org/10.1021/acs.macromol.8b01544
Bao Y, Huang X B, Xu J, Cui S X. Macromolecules, 2021, 54(15): 7314-7320. doi:10.1021/acs.macromol.1c01251http://dx.doi.org/10.1021/acs.macromol.1c01251
Florin E L, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy V T, Gaub H E. Biosens Bioelectron, 1995, 10: 895-901. doi:10.1016/0956-5663(95)99227-chttp://dx.doi.org/10.1016/0956-5663(95)99227-c
Butt H J, Jaschke M. Nanotechnology, 1995, 6: 1-7. doi:10.1088/0957-4484/6/1/001http://dx.doi.org/10.1088/0957-4484/6/1/001
Xiao X D, Qian L M. Langmuir, 2000, 16(21): 8153-8158. doi:10.1021/la000770ohttp://dx.doi.org/10.1021/la000770o
Wei Junhao(危军浩), Cai Wanhao(蔡皖豪), Cui Shuxun(崔树勋). Acta Chim Sin(化学学报), 2019, 77(2): 189-194. doi:10.6023/a18090400http://dx.doi.org/10.6023/a18090400
Cai W H, Xiao C, Qian L M, Cui S X. Nano Res, 2018, 12(1): 57-61. doi:10.1007/s12274-018-2176-8http://dx.doi.org/10.1007/s12274-018-2176-8
Luo Z L, Zhang A F, Chen Y M, Shen Z H, Cui S X. Macromolecules, 2016, 49(9): 3559-3565. doi:10.1021/acs.macromol.6b00247http://dx.doi.org/10.1021/acs.macromol.6b00247
Wang K F, Pang X C, Cui S X. Langmuir, 2013, 29(13): 4315-4319. doi:10.1021/la400626xhttp://dx.doi.org/10.1021/la400626x
Yu M, Guo X, Zhao W, Zhang K. Phys Chem Chem Phys, 2021, 23(46): 26130-26134. doi:10.1039/d1cp03572jhttp://dx.doi.org/10.1039/d1cp03572j
Conti M, Bustanji Y, Falini G, Ferruti P, Stefoni S, Samori B. Chemphyschem, 2001, 2(10): 610-613. doi:10.1002/1439-7641(20011015)2:10<610::aid-cphc610>3.0.co;2-6http://dx.doi.org/10.1002/1439-7641(20011015)2:10<610::aid-cphc610>3.0.co;2-6
Li I T, Walker G C. J Am Chem Soc, 2010, 132(18): 6530-6540. doi:10.1021/ja101155hhttp://dx.doi.org/10.1021/ja101155h
Bao Y, Qian H J, Lu Z Y, Cui S X. Macromolecules, 2015, 48(11): 3685-3690. doi:10.1021/acs.macromol.5b00260http://dx.doi.org/10.1021/acs.macromol.5b00260
Liu K, Song Y, Feng W, Liu N N, Zhang W K, Zhang X. J Am Chem Soc, 2011, 133(10): 3226-3229. doi:10.1021/ja108022hhttp://dx.doi.org/10.1021/ja108022h
0
Views
104
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution