Huang Cai-juan,Huang Meng-qian,Chen Qin,et al.Synthesis and Property of Eugenol-based Bisphenols and Poly(thioether carbonate)s[J].ACTA POLYMERICA SINICA,2022,53(09):1095-1103.
Polycarbonate is one of the most important polymeric materials in human society
which has found wide application in various areas owning to its excellent properties. However
traditional polycarbonates are derived from non-renewable petroleum-based chemicals
some of which are highly toxic. Therefore
the search for renewable resources
such as biomass and carbon dioxide
to replace petroleum-based chemicals for polymer synthesis has received great
attention in recent years. In this work
thioether-containing bisphenols were synthesized from bio-based eugenol and dithiols with different lengths of carbon chain
via
thiol-ene click reaction initiated by UV light. The structures of eugenol-based bisphenols were confirmed by 1H- nuclear magnetic resonance (
1
H-NMR)
13C- nuclear magnetic resonance (
13
C-NMR) and Fourier-transform infrared spectroscopy (FTIR)
and the yield reached 76.2%. The obtained bisphenols were polymerized with triphosgene under mild conditions to prepare eugenol-based poly(thioether carbonate)s with satisfying yields. The structures of eugenol-based poly(thioether carbonate)s were illustrated by
1
H
-
NMR
13
C-NMR and FTIR
which demonstrated the successful preparation of poly(thioether carbonate)s. Gel permeation chromatography (GPC) analysis revealed that the molecular weight of those eugenol-based poly(thioether carbonate)s was in the range from 3.27×10
4
g/mol to 5.72×10
4
g/mol with polydispersity index between 1.1 and 1.9. The results of the thermal gravimetric analysis revealed that all the eugenol-based poly(thioether carbonate)s exhibited a one-step degradation pattern with a weight loss of 5% in the range of 343-359 ℃
and maximum degradation rates were found between 379 and 395 ℃
indicating the good thermostability of the as-prepared eugenol-based poly(thioether carbonate)s. The glass transition temperature of eugenol-based poly(thioether carbonate)s decreased from 24.4 ℃ to 12.2 ℃ as the lengths of the carbon chain of dithiols increased. Finally
one eugenol-based poly(thioether carbonate) was post-oxidized with m-chloroperbenzoic acid to obtain poly(sulfone carbonate)
which was confirmed by
1
H
-
NMR
13
C-NMR and FTIR. After post-oxidation
the obtained poly(sulfone carbonate) exhibited decreased thermal stability and glass transformation temperature.
Zhang C, Xue J, Yang X, Ke Y, Ou R, Wang Y, Madbouly S A, Wang Q. Prog Polym Sci, 2022, 125: 101473. doi:10.1016/j.progpolymsci.2021.101473http://dx.doi.org/10.1016/j.progpolymsci.2021.101473
Babu R P, O'connor K, Seeram R. Prog Biomater, 2013, 2(1): 8. doi:10.1186/2194-0517-2-8http://dx.doi.org/10.1186/2194-0517-2-8
Gandini A, Lacerda T M. Prog Polym Sci, 2015, 48: 1-39. doi:10.1016/j.progpolymsci.2014.11.002http://dx.doi.org/10.1016/j.progpolymsci.2014.11.002
Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J, Hallett J P, Leak D J, Liotta C L. Science, 2006, 311(5760): 484-489. doi:10.1126/science.1114736http://dx.doi.org/10.1126/science.1114736
Chen Xuesi(陈学思), Chen Guoqiang(陈国强), Tao Youhua(陶友华), Wang Yuzhong(王玉忠), Lv Xiaobing(吕小兵), Zhang Liquan(张立群), Zhu Jin(朱锦), Zhang Jun(张军), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Zhang C J, Zhang X H. Chinese J Polym Sci, 2019, 37(10): 951-958. doi:10.1007/s10118-019-2288-yhttp://dx.doi.org/10.1007/s10118-019-2288-y
Walton N J, Narbad A, Faulds C, Williamson G. Curr Opin Biotechnol, 2000, 11(5): 490-496. doi:10.1016/s0958-1669(00)00125-7http://dx.doi.org/10.1016/s0958-1669(00)00125-7
Khalil A A, ur Rahman U, Khan M R, Sahar A, Mehmood T, Khan M. RSC Adv, 2017, 7(52): 32669-32681. doi:10.1039/c7ra04803chttp://dx.doi.org/10.1039/c7ra04803c
Hume W. J Dent Res, 1983, 62(9): 1013-1015. doi:10.1177/00220345830620090301http://dx.doi.org/10.1177/00220345830620090301
Markowitz K, Moynihan M, Liu M, Kim S. Oral Surg, Oral Med, Oral Pathol, 1992, 73(6): 729-737. doi:10.1016/0030-4220(92)90020-qhttp://dx.doi.org/10.1016/0030-4220(92)90020-q
Miyazawa M, Hisama M. J Agric Food Chem, 2001, 49(8): 4019-4025. doi:10.1021/jf0103469http://dx.doi.org/10.1021/jf0103469
Prakash P, Gupta N. Indian J Physiol Pharmacol, 2005, 49(2): 125-131
Jirovetz L, Buchbauer G, Stoilova I, Stoyanova A, Krastanov A, Schmidt E. J Agric Food Chem, 2006, 54(17): 6303-6307. doi:10.1021/jf060608chttp://dx.doi.org/10.1021/jf060608c
Ogendo J, Kostyukovsky M, Ravid U, Matasyoh J, Deng A, Omolo E, Kariuki S, Shaaya E. J Stored Prod Res, 2008, 44(4): 328-334. doi:10.1016/j.jspr.2008.02.009http://dx.doi.org/10.1016/j.jspr.2008.02.009
Peppas N A, Am Ende D J. J Appl Polym Sci, 1997, 66(3): 509-513. doi:10.1002/(sici)1097-4628(19971017)66:3<509::aid-app11>3.0.co;2-qhttp://dx.doi.org/10.1002/(sici)1097-4628(19971017)66:3<509::aid-app11>3.0.co;2-q
Kamatou G P, Vermaak I, Viljoen A M. Molecules, 2012, 17(6): 6953-6981. doi:10.3390/molecules17066953http://dx.doi.org/10.3390/molecules17066953
Chen C H, Tung S H, Jeng R J, Abu-Omar M M, Lin C H. Green Chem, 2019, 21(16): 4475-4488. doi:10.1039/c9gc01184fhttp://dx.doi.org/10.1039/c9gc01184f
Liu T, Sun L, Ou R, Fan Q, Li L, Guo C, Liu Z, Wang Q. Chem Eng J, 2019, 368: 359-368. doi:10.1016/j.cej.2019.02.200http://dx.doi.org/10.1016/j.cej.2019.02.200
Faye I, Decostanzi M, Ecochard Y, Caillol S. Green Chem, 2017, 19(21): 5236-5242. doi:10.1039/c7gc02322ghttp://dx.doi.org/10.1039/c7gc02322g
Parisi L, Scheibel D, Lin S, Bennett E, Lodge J, Miri M. Polymer, 2017, 114: 319-328. doi:10.1016/j.polymer.2017.03.009http://dx.doi.org/10.1016/j.polymer.2017.03.009
Llevot A, Dannecker P K, von Czapiewski M, Over L C, Soeyler Z, Meier M A. Chem Eur J, 2016, 22(33): 11510-11521. doi:10.1002/chem.201602068http://dx.doi.org/10.1002/chem.201602068
Hu K, Zhao D, Wu G, Ma J. Polym Chem, 2016, 7(5): 1096-1110. doi:10.1039/c5py01699ahttp://dx.doi.org/10.1039/c5py01699a
King Jr J, LeGrand D, Bendler J. Handbook of Polycarbonate Science and Technology. New York: Marcel Dekker, 2000
Vom Saal F S, Hughes C. Environ Health Perspect, 2005, 113(8): 926-933. doi:10.1289/ehp.7713http://dx.doi.org/10.1289/ehp.7713
Rubin B S. J Steroid Biochem Mol Biol, 2011, 127(1-2): 27-34. doi:10.1016/j.jsbmb.2011.05.002http://dx.doi.org/10.1016/j.jsbmb.2011.05.002
Rochester J R. Reprod Toxicol, 2013, 42: 132-155. doi:10.1016/j.reprotox.2013.08.008http://dx.doi.org/10.1016/j.reprotox.2013.08.008
Trita A, Over L, Pollini J, Baader S, Riegsinger S, Meier M, Gooßen L. Green Chem, 2017, 19(13): 3051-3060. doi:10.1039/c7gc00553ahttp://dx.doi.org/10.1039/c7gc00553a
Tao Lei(陶磊), Zhao Yuan(赵原), Yang Bin(杨斌), Wei Yan(危岩), Wu Haibo(吴海波). Acta Polymerica Sinica(高分子学报), 2016, (11): 1482-1494. doi:10.11777/j.issn1000-3304.2016.16218http://dx.doi.org/10.11777/j.issn1000-3304.2016.16218
Hoyle C E, Bowman C N. Angew Chem Int Ed, 2010, 49(9): 1540-1573. doi:10.1002/anie.200903924http://dx.doi.org/10.1002/anie.200903924
Killops K L, Campos L M, Hawker C J. J Am Chem Soc, 2008, 130(15): 5062-5064. doi:10.1021/ja8006325http://dx.doi.org/10.1021/ja8006325
Huang M, Bai D, Chen Q, Zhao C, Ren T, Huang C, North M, Xie H. Polym Chem, 2020, 11(32): 5133-5139. doi:10.1039/d0py00291ghttp://dx.doi.org/10.1039/d0py00291g
Wacker K T, Kristufek S L, Lim S-M, Kahn S, Wooley K L. RSC Adv, 2016, 6(85): 81672-81679. doi:10.1039/c6ra19568ghttp://dx.doi.org/10.1039/c6ra19568g
Sarapas J M, Tew G N. Angew Chem Int Ed, 2016, 55(51): 15860-15863. doi:10.1002/anie.201609023http://dx.doi.org/10.1002/anie.201609023
Ren T, Chen Q, Zhao C, Zheng Q, Xie H, North M. Green Chem, 2020, 22(5): 1542-1547. doi:10.1039/c9gc03926khttp://dx.doi.org/10.1039/c9gc03926k
Synthesis and Properties of Polycaprolactone and Polycarbonate-based Polyurethanes
Biomimetic Synthesis and Properties of Polyisoprene-based Rubber Grafted with Poly(amino acid)
Organocatalytic Alternating Copolymerization of CO2/Epoxide/Anhydride for Synthesis of Polycarbonate/Polyester Copolymers
Synthesis, Structure and Properties of Isobutylene Oxide-CO2 Copolymer
Related Author
Bo-xiang Cheng
Ming-qian Wang
Zhi-qiang Ding
Zhe Ma
Bin Wang
Yue-sheng Li
Zhan-wei Feng
Quan-quan Dai
Related Institution
School of Materials Science and Engineering, Tianjin University
School of Applied Chemistry and Engineering, University of Science and Technology of China
Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
Collgene of Chemical Engineering, Qingdao University of Science and Technology
Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology