浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
Published:20 September 2022,
Published Online:07 July 2022,
Received:29 March 2022,
Accepted:18 May 2022
移动端阅览
朱忆诺,陶友华.基于氨基酸基交硫酯单体的闭环回收高分子[J].高分子学报,2022,53(09):1023-1031.
Zhu Yi-nuo,Tao You-hua.Amino Acid-based Dithiolactone Monomers towards Chemically Recyclable Polymers[J].ACTA POLYMERICA SINICA,2022,53(09):1023-1031.
朱忆诺,陶友华.基于氨基酸基交硫酯单体的闭环回收高分子[J].高分子学报,2022,53(09):1023-1031. DOI: 10.11777/j.issn1000-3304.2022.22102.
Zhu Yi-nuo,Tao You-hua.Amino Acid-based Dithiolactone Monomers towards Chemically Recyclable Polymers[J].ACTA POLYMERICA SINICA,2022,53(09):1023-1031. DOI: 10.11777/j.issn1000-3304.2022.22102.
发展闭环回收高分子被认为是解决塑料污染问题和发展循环经济的最佳选择,该方法通过设计特定的单体合成高分子材料,再将其直接转化为原单体,从而实现资源循环和同级使用. 近年来,中国学者在可闭环回收的聚酯及聚硫酯的合成方面取得了一系列重要进展. 尽管如此,“理想单体”的设计以及聚合物的使用性能始终是制约闭环回收高分子进一步发展的主要因素. 我们课题组提出氨基酸来源的交硫酯单体可以作为一类“理想单体”用于闭环回收高分子. 交硫酯单体在热力学上更有利于成环,在动力学上更有利于开环聚合,从而成功地将2种看似矛盾的性质结合到一种单体上,使交硫酯单体更容易合成、更容易聚合、其聚合物也更容易实现闭环回收. 特别是来源于缬氨酸的异丙基交硫酯的开环聚合,所得聚合产物具有无规但是结晶的不同寻常的特性. 相信进一步发展氨基酸基交硫酯单体的高效成环和可控聚合,将为闭环回收高分子的大规模制备和应用奠定基础.
Developing chemically recyclable polymers represents a greener alternative to landfill and incineration and offers a closed-loop strategy toward a circular materials economy. Although some progress has been achieved in the synthesis of closed-loop recycled polymers
the synthesis of chemically recyclable polymers is still plagued with certain fundamental limitations
including trade-offs between the monomer's cyclizability and polymerizability
as well as between polymer's depolymerizability and properties. Very recently
our research group has proposed that amino acid-based dithiolactone monomers is a kind of "ideal monomer" for chemically recyclable polymers. These dithiolactone monomers demonstrate appealing chemical properties different from those of dilactone
including accelerated ring closure
augmented kinetics polymerizability
high depolymerizability and selectivity
and thus constitute a unique class of polythioester materials exhibiting controlled molecular weight (up to 100.5 kDa)
atactic yet high crystallinity
structurally diversity
and chemical recyclability. In particular
the ring-opening polymerization of isopropyl dithiolactone derived from valine
delivered atactic yet crystalline polythioester. These amino acid-based chemically recyclable plastics show promise as next-generation sustainable materials.
闭环回收高分子氨基酸交硫酯聚硫酯开环聚合
Chemically recyclable polymersAmino acidsDithiolactonePolythioestersRing-opening polymerization
Thomas C M. Chem Soc Rev, 2010, 39(1): 165-173. doi:10.1039/b810065ahttp://dx.doi.org/10.1039/b810065a
Shao J, Sun J, Bian X, Cui Y, Zhou Y, Li G, Chen X. Macromolecules, 2013, 46(17): 6963-6971. doi:10.1021/ma400938vhttp://dx.doi.org/10.1021/ma400938v
Kricheldorf H R. Angew Chem Int Ed, 2006, 45(35): 5752-5784. doi:10.1002/anie.200600693http://dx.doi.org/10.1002/anie.200600693
Song Z, Fu H, Wang R, Pacheco L A, Wang X, Lin Y, Cheng J. Chem Soc Rev, 2018, 47(19): 7401-7425. doi:10.1039/c8cs00095fhttp://dx.doi.org/10.1039/c8cs00095f
Deming T J. Chem Rev, 2016, 116(3): 786-808. doi:10.1021/acs.chemrev.5b00292http://dx.doi.org/10.1021/acs.chemrev.5b00292
Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G. Chem Rev, 2009, 109(11): 5528-5578. doi:10.1021/cr900049thttp://dx.doi.org/10.1021/cr900049t
Cheng J, Deming T J. J Am Chem Soc, 2001, 123(38): 9457-9458. doi:10.1021/ja0110022http://dx.doi.org/10.1021/ja0110022
Li M, Zhang S, Zhang X, Wang Y, Chen J, Tao Y, Wang X. Angew Chem Int Ed, 2021, 60(11): 6003-6012. doi:10.1002/anie.202011352http://dx.doi.org/10.1002/anie.202011352
Li M, Tao Y, Tang J, Wang Y, Zhang X, Tao Y, Wang X. J Am Chem Soc, 2019, 141(1): 281-289. doi:10.1021/jacs.8b09739http://dx.doi.org/10.1021/jacs.8b09739
Deming T J. Nature, 1997, 390(6658): 386-389. doi:10.1038/37084http://dx.doi.org/10.1038/37084
Leuchs H. Berichte der Deutschen Chemischen Gesellschaft, 1906, 39(1): 857-861. doi:10.1002/cber.190603901133http://dx.doi.org/10.1002/cber.190603901133
Martin Vaca B, Bourissou D. ACS Macro Lett, 2015, 4(7): 792-798. doi:10.1021/acsmacrolett.5b00376http://dx.doi.org/10.1021/acsmacrolett.5b00376
Tang J, Li M, Wang X, Tao Y. Angew Chem Int Ed, 2022, 61(15): e202115465. doi:10.1002/anie.202115465http://dx.doi.org/10.1002/anie.202115465
He W, Wang S, Li M, Wang X, Tao Y. Angew Chem Int Ed, 2022, 61(9): e202112439. doi:10.1002/anie.202112439http://dx.doi.org/10.1002/anie.202112439
Lian J, Chen J, Luan S, Liu W, Zong B, Tao Y, Wang X. ACS Macro Lett, 2022, 11(1): 46-52. doi:10.1021/acsmacrolett.1c00658http://dx.doi.org/10.1021/acsmacrolett.1c00658
Li M, Tao Y. Polym Chem, 2021, 12(10): 1415-1424. doi:10.1039/d0py01387khttp://dx.doi.org/10.1039/d0py01387k
Chen J, Dong Y, Xiao C, Tao Y, Wang X. Macromolecules, 2021, 54(5): 2226-2231. doi:10.1021/acs.macromol.0c02689http://dx.doi.org/10.1021/acs.macromol.0c02689
Lian J, Li M, Wang S, Tao Y, Wang X. Macromolecules, 2020, 53(24): 10830-10836. doi:10.1021/acs.macromol.0c02065http://dx.doi.org/10.1021/acs.macromol.0c02065
Tao Y, Wang Z, Tao Y. Biopolymers, 2019, 110(6): e23288. doi:10.1002/bip.23288http://dx.doi.org/10.1002/bip.23288
Wang S, He W, Xiao C, Tao Y, Wang X. Biomacromolecules, 2019, 20(4): 1655-1666. doi:10.1021/acs.biomac.9b00026http://dx.doi.org/10.1021/acs.biomac.9b00026
Wang S, Tao Y, Wang J, Tao Y, Wang X. Chem Sci, 2019, 10(5): 1531-1538. doi:10.1039/c8sc03415jhttp://dx.doi.org/10.1039/c8sc03415j
He W, Tao Y, Wang X. Macromolecules, 2018, 51(20): 8248-8257. doi:10.1021/acs.macromol.8b01790http://dx.doi.org/10.1021/acs.macromol.8b01790
Tao Y, Wang S, Zhang X, Wang Z, Tao Y, Wang X. Biomacromolecules, 2018, 19(3): 936-942. doi:10.1021/acs.biomac.7b01719http://dx.doi.org/10.1021/acs.biomac.7b01719
Chen J, Li M, He W, Tao Y, Wang X. Macromolecules, 2017, 50(23): 9128-9134. doi:10.1021/acs.macromol.7b02331http://dx.doi.org/10.1021/acs.macromol.7b02331
Li M, Cui F, Li Y, Tao Y, Wang X. Macromolecules, 2016, 49(24): 9415-9424. doi:10.1021/acs.macromol.6b02244http://dx.doi.org/10.1021/acs.macromol.6b02244
Tao Y, Chen X, Jia F, Wang S, Xiao C, Cui F, Li Y, Bian Z, Chen X, Wang X. Chem Sci, 2015, 6(11): 6385-6391. doi:10.1039/c5sc02479jhttp://dx.doi.org/10.1039/c5sc02479j
Wang Y, Li M, Chen J, Tao Y, Wang X. Angew Chem Int Ed, 2021, 60(41): 22547-22553. doi:10.1002/anie.202109767http://dx.doi.org/10.1002/anie.202109767
Wang Y, Li M, Wang S, Tao Y, Wang X. Angew Chem Int Ed, 2021, 60(19): 10798-10805. doi:10.1002/anie.202016228http://dx.doi.org/10.1002/anie.202016228
Tao Youhua(陶友华). Acta Polymerica Sinica(高分子学报), 2016, (9): 1151-1159. doi:10.11777/j.issn1000-3304.2016.16130http://dx.doi.org/10.11777/j.issn1000-3304.2016.16130
He Wenjing(和文婧), Tao Youhua(陶友华). Acta Polymerica Sinica(高分子学报), 2020, 51(10): 1083-1091. doi:10.11777/j.issn1000-3304.2020.20094http://dx.doi.org/10.11777/j.issn1000-3304.2020.20094
He W, Tao Y. Chinese J Chem, 2021, 39(8): 2119-2124. doi:10.1002/cjoc.202100205http://dx.doi.org/10.1002/cjoc.202100205
Shi C, Reilly L T, Phani Kumar V S, Coile M W, Nicholson S R, Broadbelt L J, Beckham G T, Chen E Y X. Chem, 2021, 7(11): 2896-2912. doi:10.1016/j.chempr.2021.10.004http://dx.doi.org/10.1016/j.chempr.2021.10.004
Zhang F, Zeng M, Yappert Ryan D, Sun J, Lee Y H, LaPointe A M, Peters B, Abu-Omar M M, Scott S L. Science, 2020, 370(6515): 437-441. doi:10.1126/science.abc5441http://dx.doi.org/10.1126/science.abc5441
Nicholson S R, Rorrer N A, Carpenter A C, Beckham G T. Joule, 2021, 5(3): 673-686. doi:10.1016/j.joule.2020.12.027http://dx.doi.org/10.1016/j.joule.2020.12.027
Tang X, Chen E Y X. Chem, 2019, 5(2): 284-312. doi:10.1016/j.chempr.2018.10.011http://dx.doi.org/10.1016/j.chempr.2018.10.011
Han J, Guo Y, Wang H, Zhang K, Yang D. J Am Chem Soc, 2021, 143(46): 19486-19497. doi:10.1021/jacs.1c08888http://dx.doi.org/10.1021/jacs.1c08888
Rorrer N A, Nicholson S, Carpenter A, Biddy M J, Grundl N J, Beckham G T. Joule, 2019, 3(4): 1006-1027. doi:10.1016/j.joule.2019.01.018http://dx.doi.org/10.1016/j.joule.2019.01.018
Geyer R, Jambeck J R, Law K L. Sci Adv, 2017, 3(7): e170078. doi:10.1126/sciadv.1700782http://dx.doi.org/10.1126/sciadv.1700782
Rahimi A, García J M. Nat Rev Chem, 2017, 1(6): 0046. doi:10.1038/s41570-017-0046http://dx.doi.org/10.1038/s41570-017-0046
Jehanno C, Flores I, Dove A P, Müller A J, Ruipérez F, Sardon H. Green Chem, 2018, 20(6): 1205-1212. doi:10.1039/c7gc03396fhttp://dx.doi.org/10.1039/c7gc03396f
Jehanno C, Pérez-Madrigal M M, Demarteau J, Sardon H, Dove A P. Polym Chem, 2019, 10(2): 172-186. doi:10.1039/c8py01284ahttp://dx.doi.org/10.1039/c8py01284a
Li J, Liu F, Liu Y, Shen Y, Li Z. Angew Chem Int Ed, 2022, 61(16): e202207105. doi:10.1002/anie.202201407http://dx.doi.org/10.1002/anie.202201407
Abel Brooks A, Snyder Rachel L, Coates Geoffrey W. Science, 2021, 373(6556): 783-789. doi:10.1126/science.abh0626http://dx.doi.org/10.1126/science.abh0626
Yuan P, Sun Y, Xu X, Luo Y, Hong M. Nat Chem, 2021, 14(3): 294-303. doi:10.1038/s41557-021-00817-9http://dx.doi.org/10.1038/s41557-021-00817-9
Ellis L D, Rorrer N A, Sullivan K P, Otto M, McGeehan J E, Román-Leshkov Y, Wierckx N, Beckham G T. Nat Catal, 2021, 4(7): 539-556. doi:10.1038/s41929-021-00648-4http://dx.doi.org/10.1038/s41929-021-00648-4
Rorrer J E, Beckham G T, Roman-Leshkov Y. JACS Au, 2021, 1(1): 8-12. doi:10.1021/jacsau.0c00041http://dx.doi.org/10.1021/jacsau.0c00041
Tennakoon A, Wu X, Paterson A L, Patnaik S, Pei Y, LaPointe A M, Ammal S C, Hackler R A, Heyden A, Slowing I I, Coates G W, Delferro M, Peters B, Huang W, Sadow A D, Perras F A. Nat Catal, 2020, 3(11): 893-901. doi:10.1038/s41929-020-00519-4http://dx.doi.org/10.1038/s41929-020-00519-4
Hong M, Chen E Y X. Nat Chem, 2016, 8(1): 42-49. doi:10.1038/nchem.2391http://dx.doi.org/10.1038/nchem.2391
Mavila S, Worrell B T, Culver H R, Goldman T M, Wang C, Lim C H, Domaille D W, Pattanayak S, McBride M K, Musgrave C B, Bowman C N. J Am Chem Soc, 2018, 140(42): 13594-13598. doi:10.1021/jacs.8b09105http://dx.doi.org/10.1021/jacs.8b09105
Smith R A, Fu G, McAteer O, Xu M, Gutekunst W R. J Am Chem Soc, 2019, 141(4): 1446-1451. doi:10.1021/jacs.8b12154http://dx.doi.org/10.1021/jacs.8b12154
Zhao N, Ren C, Li H, Li Y, Liu S, Li Z. Angew Chem Int Ed, 2017, 56(42): 12987-12990. doi:10.1002/anie.201707122http://dx.doi.org/10.1002/anie.201707122
Zhu J B, Chen E Y. Angew Chem Int Ed, 2018, 57(38): 12558-12562. doi:10.1002/anie.201808003http://dx.doi.org/10.1002/anie.201808003
Li C, Wang L, Yan Q, Liu F, Shen Y, Li Z. Angew Chem Int Ed, 2022, 61(16): e202201407. doi:10.1002/anie.202201407http://dx.doi.org/10.1002/anie.202201407
Lu X B, Wang Y. Angew Chem Int Ed, 2004, 43(27): 3574-3577. doi:10.1002/anie.200453998http://dx.doi.org/10.1002/anie.200453998
Liu Y, Zhou H, Guo J Z, Ren W M, Lu X B. Angew Chem Int Ed, 2017, 56(17): 4862-4866. doi:10.1002/anie.201701438http://dx.doi.org/10.1002/anie.201701438
Zhang S, Xu W, Du R, Zhou X, Liu X, Xu S, Wang Y Z. Green Chem, 2022, 24(8): 3284-3292. doi:10.1039/d2gc00328ghttp://dx.doi.org/10.1039/d2gc00328g
Yan Y T, Wu G, Chen S C, Wang Y Z. Sci China Chem, 2022, 65(5): 943-953. doi:10.1007/s11426-021-1196-7http://dx.doi.org/10.1007/s11426-021-1196-7
Li X Y, Zhou Q, Wen Z B, Hui Y, Yang K K, Wang Y Z. Polym Degrad Stab, 2015, 121: 253-260. doi:10.1016/j.polymdegradstab.2015.09.016http://dx.doi.org/10.1016/j.polymdegradstab.2015.09.016
Suzuki M, Makimura K, Matsuoka S. Biomacromolecules, 2016, 17(3): 1135-1141. doi:10.1021/acs.biomac.5b01748http://dx.doi.org/10.1021/acs.biomac.5b01748
Yuan J, Xiong W, Zhou X, Zhang Y, Shi D, Li Z, Lu H. J Am Chem Soc, 2019, 141(12): 4928-4935. doi:10.1021/jacs.9b00031http://dx.doi.org/10.1021/jacs.9b00031
Xiong W, Chang W, Shi D, Yang L, Tian Z, Wang H, Zhang Z, Zhou X, Chen E Q, Lu H. Chem, 2020, 6(7): 1831-1843. doi:10.1016/j.chempr.2020.06.003http://dx.doi.org/10.1016/j.chempr.2020.06.003
Shi C, McGraw Michael L, Li Z C, Cavallo L, Falivene L, Chen Eugene Y X. Sci Adv, 2020, 6(34): eabc0495. doi:10.1126/sciadv.abc0495http://dx.doi.org/10.1126/sciadv.abc0495
Zhu J B, Chen E Y X. J Am Chem Soc, 2015, 137(39): 12506-12509. doi:10.1021/jacs.5b08658http://dx.doi.org/10.1021/jacs.5b08658
Kausar A, Zulfiqar S, Sarwar M I. Polym Rev, 2014, 54(2): 185-267. doi:10.1080/15583724.2013.863209http://dx.doi.org/10.1080/15583724.2013.863209
Hasell T, Parker D J, Jones H A, McAllister T, Howdle S M. Chem Commun, 2016, 52(31): 5383-5386. doi:10.1039/c6cc00938ghttp://dx.doi.org/10.1039/c6cc00938g
Wang L Y, Gu G G, Ren B H, Yue T J, Lu X B, Ren W M. ACS Catal, 2020, 10(12): 6635-6644. doi:10.1021/acscatal.0c00906http://dx.doi.org/10.1021/acscatal.0c00906
Konieczynska M D, Villa-Camacho J C, Ghobril C, Perez-Viloria M, Tevis K M, Blessing W A, Nazarian A, Rodriguez E K, Grinstaff M W. Angew Chem Int Ed, 2016, 55(34): 9984-9987. doi:10.1002/anie.201604827http://dx.doi.org/10.1002/anie.201604827
Ghobril C, Charoen K, Rodriguez E K, Nazarian A, Grinstaff M W. Angew Chem Int Ed, 2013, 52(52): 14070-14074. doi:10.1002/anie.201308007http://dx.doi.org/10.1002/anie.201308007
Kricheldorf H R, Schwarz G. J Macromol Sci, Part A, 2007, 44(6): 625-649. doi:10.1080/10601320701285094http://dx.doi.org/10.1080/10601320701285094
Bannin T J, Kiesewetter M K. Macromolecules, 2015, 48(16): 5481-5486. doi:10.1021/acs.macromol.5b01463http://dx.doi.org/10.1021/acs.macromol.5b01463
0
Views
211
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution