浏览全部资源
扫码关注微信
复旦大学材料科学系 聚合物分子工程国家重点实验室 上海 200433
Yan-lei Yu, E-mail: ylyu@fudan.edu.cn
Published:20 November 2022,
Published Online:18 August 2022,
Received:29 March 2022,
Accepted:08 April 2022
移动端阅览
黄鑫,庞馨蕾,秦朗等.室温光致形变主链型交联液晶高分子纤维执行器[J].高分子学报,2022,53(11):1324-1331.
Huang Xin,Pang Xin-lei,Qin Lang,et al.Photodeformable Main-chain Crosslinked Liquid Crystal Polymer Fiber Actuators at Room Temperature[J].ACTA POLYMERICA SINICA,2022,53(11):1324-1331.
黄鑫,庞馨蕾,秦朗等.室温光致形变主链型交联液晶高分子纤维执行器[J].高分子学报,2022,53(11):1324-1331. DOI: 10.11777/j.issn1000-3304.2022.22103.
Huang Xin,Pang Xin-lei,Qin Lang,et al.Photodeformable Main-chain Crosslinked Liquid Crystal Polymer Fiber Actuators at Room Temperature[J].ACTA POLYMERICA SINICA,2022,53(11):1324-1331. DOI: 10.11777/j.issn1000-3304.2022.22103.
将分别含有偶氮苯和苯甲酸苯酯的2种液晶单体与伯胺进行迈克尔加成反应,得到分子量可控的主链型液晶低聚物. 利用先熔融提拉、后自由基聚合的方法将低聚物制备成交联液晶高分子纤维. 液晶单体与伯胺之间的扩链反应有效地降低了高分子网络的交联密度,进而降低纤维的玻璃化转变温度. 同时,这种先拉伸、再聚合的方式将纤维的取向与交联过程分开,保证了纤维中的液晶基元沿拉伸方向呈规整排列. 因此,取向后的交联液晶高分子纤维可在室温下实现可逆光致弯曲形变,其最大弯曲角度接近60°,且弯曲方向可以通过改变光照方向进行调控. 这种形变幅度大、方向可控的主链型交联液晶高分子纤维有望推动光响应柔性执行器等领域的发展.
Photodeformable crosslinked liquid crystal polymer fiber actuators have potential applications in soft robots and other fields. However
due to the limitations of processing methods
it is still a great challenge to fabricate fiber actuators that can undergo large and direction-controllable light-induced bending at room temperature. Here
the main-chain liquid crystal oligomer with controllable molecular weight is synthesized by the Michael addition reaction between primary amines and liquid crystal monomers containing azobenzene or phenyl benzoate mesogens
respectively. On the basis
the cross-linked liquid crystal polymer fiber is obtained through dip-drawing the melt oligomer followed by the radical polymerization. The chain extension reaction between the primary amine and liquid crystal monomers effectively decreases the crosslinking density of the polymer network
thus lowering the glass transition temperature. Meanwhile
the alignment and crosslinking processes are decoupled by the strategy that the oligomer is stretched first and then the polymerization is implemented
which ensures that mesogens in the fiber are aligned along the stretching direction. Accordingly
the aligned fiber exhibits reversible light-induced bending at room temperature
whose maximum bending angle is close to 60°
and furthermore the bending direction can be adjusted by the light irradiation direction. The main-chain crosslinked liquid crystal polymer fiber with large and direction-controllable deformation has great potential in the field of soft robots. In addition
the method of processing oligomers and then polymerizing actuators is expected to be combined with the template method and 3D printing to fabricate actuators with complex shapes
promoting the development of photoresponsive flexible actuators and other fields.
液晶高分子光致形变偶氮苯纤维
Liquid crystal polymersPhotodeformationAzobenzenesFibers
Pang X L, Lv J A, Zhu C Y, Qin L, Yu Y L. Adv Mater, 2019, 31(52): 1904224. doi:10.1002/adma.201904224http://dx.doi.org/10.1002/adma.201904224
Kupfer J, Finkelmann H. Macromol Rapid Commun, 1991, 12(12): 717-726
Ware T H, Mcconney M E, Wie J J, Tondiglia V P, White T J. Science, 2015, 347(6225): 982-984. doi:10.1126/science.1261019http://dx.doi.org/10.1126/science.1261019
Finkelmann H, Nishikawa E, Pereira G G, Warner M. Phys Rev Lett, 2001, 87(1): 015501. doi:10.1103/physrevlett.87.015501http://dx.doi.org/10.1103/physrevlett.87.015501
Yu Y, Nakano M, Ikeda T. Nature, 2003, 425(6954): 145-145. doi:10.1038/425145ahttp://dx.doi.org/10.1038/425145a
Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Kruger P, Losche M, Kremer F. Nature, 2001, 410(6827): 447-450. doi:10.1038/35068522http://dx.doi.org/10.1038/35068522
Urayama K, Honda S, Takigawa T. Macromolecules, 2006, 39(5): 1943-1949. doi:10.1021/ma052762qhttp://dx.doi.org/10.1021/ma052762q
Winkler M, Kaiser A, Krause S, Finkelmann H, Schmidt A M. Macromol Symp, 2010, 291(1): 186-192. doi:10.1002/masy.201050522http://dx.doi.org/10.1002/masy.201050522
Kaiser A, Winkler M, Krause S, Finkelmann H, Schmidt A M. J Mater Chem, 2009, 19(4): 538-543. doi:10.1039/b813120chttp://dx.doi.org/10.1039/b813120c
Liu Y Y, Xu B, Sun S T, Wei J, Wu L M, Yu Y L. Adv Mater, 2017, 29(9): 1604792-1604798. doi:10.1002/adma.201604792http://dx.doi.org/10.1002/adma.201604792
Wei J, Yu Y. Soft Matter, 2012, 8(31): 8050-8059. doi:10.1039/c2sm25474chttp://dx.doi.org/10.1039/c2sm25474c
Stoychev G, Kirillova A, Ionov L. Adv Opt Mater, 2019, 7(16): 1900067. doi:10.1002/adom.201900067http://dx.doi.org/10.1002/adom.201900067
Iqbal D, Samiullah M H. Materials, 2013, 6(1): 116-142. doi:10.3390/ma6010116http://dx.doi.org/10.3390/ma6010116
Qing Xin(卿鑫), Lv Jiuan(吕久安), Yu Yanlei(俞燕蕾). Acta Polymerica Sinica(高分子学报), 2017, (11): 1679-1705. doi:10.11777/j.issn1000-3304.2017.17196http://dx.doi.org/10.11777/j.issn1000-3304.2017.17196
Han S Q, Chen Y Y, Xu B, Wei J, Yu Y L. Chinese J Polym Sci, 2020, 38(11): 806-813. doi:10.1007/s10118-020-2383-0http://dx.doi.org/10.1007/s10118-020-2383-0
Kondo M, Yu Y, Ikeda T. Angew Chem Int Ed, 2006, 45(9): 1378-1382. doi:10.1002/anie.200503684http://dx.doi.org/10.1002/anie.200503684
Modes C D, Warner M, van Oosten C L, Corbett D. Phys Rev E, 2010, 82(4): 041111. doi:10.1103/physreve.82.041111http://dx.doi.org/10.1103/physreve.82.041111
Harris K D, Cuypers R, Scheibe P, van Oosten C L, Bastiaansen C W M, Lub J, Broer D J. J Mater Chem A, 2005, 15(47): 5043-5048. doi:10.1039/b512655jhttp://dx.doi.org/10.1039/b512655j
Lee K M, Bunning T J, White T J. Adv Mater, 2012, 24(21): 2839-2843. doi:10.1002/adma.201200374http://dx.doi.org/10.1002/adma.201200374
White T J, Tabiryan N V, Serak S V, Hrozhyk U A, Tondiglia V P, Koerner H, Vaia R A, Bunning T J. Soft Matter, 2008, 4(9): 1796-1798. doi:10.1039/b805434ghttp://dx.doi.org/10.1039/b805434g
Serak S, Tabiryan N, Vergara R, White T J, Vaia R A, Bunning T J. Soft Mater, 2010, 6(4): 779-783. doi:10.1039/b916831ahttp://dx.doi.org/10.1039/b916831a
Yang M Y, Xu Y Y, Zhang X, Bisoyi H K, Xue P, Yang Y Z, Yang X, Valenzuela C, Chen Y H, Wang L, Feng W, Li Q. Adv Funct Mater, 2022, 32: 2201884. doi:10.1002/adfm.202201884http://dx.doi.org/10.1002/adfm.202201884
Yang J J, Zhang X F, Zhang X, Wang L, Feng W, Li Q. Adv Mater, 2021, 33(14): 2004754. doi:10.1002/adma.202004754http://dx.doi.org/10.1002/adma.202004754
Yoshino T, Kondo M, Mamiya J, Kinoshita M, Yu Y L, Ikeda T. Adv Mater, 2010, 22(12): 1361-1363. doi:10.1002/adma.200902879http://dx.doi.org/10.1002/adma.200902879
Ikeda T, Mamiya J, Yu Y L. Angew Chem Int Ed, 2007, 46(4): 506-528. doi:10.1002/anie.200602372http://dx.doi.org/10.1002/anie.200602372
Liu Y Y, Wu W, Wei J, Yu Y L. ACS Appl Mater Interfaces, 2017, 9(1): 782-789. doi:10.1021/acsami.6b11550http://dx.doi.org/10.1021/acsami.6b11550
Zhang Y Y, Xu J X, Cheng F T, Yin R R, Yen C C, Yu Y L. J Mater Chem, 2010, 20(34): 7123-7130. doi:10.1039/c0jm00510jhttp://dx.doi.org/10.1039/c0jm00510j
Peng S, Guo Q, Hartley P G, Hughes T C. J Mater Chem C, 2014, 2(39): 8303-8312. doi:10.1039/c4tc00321ghttp://dx.doi.org/10.1039/c4tc00321g
Deng Y, Li Y, Wang X. Macromolecules, 2006, 39(19): 6590-6598. doi:10.1021/ma061335phttp://dx.doi.org/10.1021/ma061335p
Ikeda T, Nakano M, Yu Y L. Adv Mater, 2003, 15(3): 201-205. doi:10.1002/adma.200390045http://dx.doi.org/10.1002/adma.200390045
Cheng Z X, Ma S D, Zhang Y H, Huang S, Chen Y X, Yu H F. Macromolecules, 2017, 50(21): 8317-8324. doi:10.1021/acs.macromol.7b01741http://dx.doi.org/10.1021/acs.macromol.7b01741
Gelebart A H, Bride M M, Schenning A P H J, Bowman C N, Broer D J. Adv Funct Mater, 2016, 26(29): 5322-5327. doi:10.1002/adfm.201601221http://dx.doi.org/10.1002/adfm.201601221
0
Views
139
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution