浏览全部资源
扫码关注微信
1.中国科学院化学研究所 北京分子科学国家研究中心 中国科学院工程塑料重点实验室 北京 100190
2.中国科学院大学 北京 100049
Chen-yang Liu, E-mail: liucy@iccas.ac.cn
Published:20 November 2022,
Published Online:23 August 2022,
Received:03 April 2022,
Accepted:18 May 2022
移动端阅览
欧华林,张宝庆,刘琛阳.结构可控的聚合物长短刷接枝纳米粒子[J].高分子学报,2022,53(11):1388-1398.
Ou Hua-lin,Zhang Bao-qing,Liu Chen-yang.Bimodal Polymer-grafted Nanoparticles with Precisely Controlled Structures[J].ACTA POLYMERICA SINICA,2022,53(11):1388-1398.
欧华林,张宝庆,刘琛阳.结构可控的聚合物长短刷接枝纳米粒子[J].高分子学报,2022,53(11):1388-1398. DOI: 10.11777/j.issn1000-3304.2022.22110.
Ou Hua-lin,Zhang Bao-qing,Liu Chen-yang.Bimodal Polymer-grafted Nanoparticles with Precisely Controlled Structures[J].ACTA POLYMERICA SINICA,2022,53(11):1388-1398. DOI: 10.11777/j.issn1000-3304.2022.22110.
通过RAFT聚合制备了一系列窄分子量分布的聚(γ-甲基丙烯酰氧基丙基三乙氧基硅烷)(PTEPM)-
b
-聚甲基丙烯酸甲酯(PMMA)嵌段共聚物和PTEPM、PMMA低聚物. 将具有不同PMMA分子量的2种PTEPM-
b
-PMMA共聚物与低聚物PMMA或PTEPM进行共组装(微相分离),形成片、柱、球等不同PTEPM相区结构. 采用盐酸气氛处理,PTEPM相区水解交联形成倍半硅氧烷SiO
1.5
内核,分离纯化得到聚合物长短刷接枝纳米粒子.使用这种相分离-交联-分散制备方法,调节嵌段共聚物分子结构和三组分比例,可实现聚合物接枝纳米粒子内核形状和尺寸、接枝密度、长短刷比例、长刷长度的精确调控. 这些纳米粒子是研究聚合物纳米复合材料结构-性能关系的理想模型体系.
A series of poly(3-(triethoxysilyl)propyl methacrylate) (PTEPM) oligomers (oT)
polymethylmethacrylate (PMMA) oligomers (oM)
and block copolymers of PTEPM-
b
-PMMA with narrow molecular weight distributions were synthesized using RAFT polymerization. Two PTEPM-
b
-PMMA copolymers with the PMMA blocks of different molecular weights were co-assembled with the oligomers of PMMA or PTEPM to form various ordered nanoscale
structures
such as lamellae
cylinders
and spheres. PTEPM block could be crosslinked to form silsesquioxane core (
i.e.
SiO
1.5
)
when the obtained co-assembly materials were immersed in hydrochloric acid atmosphere. After appropriate separation and purification
the bimodal polymer grafted nanoparticles (PGNPs) with different microstructures could be prepared. Using this assembling-crosslinking-dispersing (ACD) method and adjusting the molecular structure of block copolymer and the ratio of the three components (PTEPM-
b
-PMMA
oT
and oM)
the structural parameters of bimodal PGNPs
including the shape and size of core
grafting density
molar ratio between long and short brushes
and length of long brushes
could be precisely controlled. By adjusting the proportions of two block copolymers with the PMMA blocks of different molecular weights and the amounts of oMs
bimodal PGNPs with different molar ratios of long and short brushes could be prepared. By adjusting the molecular weight of the long brush and the amounts of oM
bimodal PGNPs with different lengths of long brushes were obtained. By adjusting the amounts of oM and oT
bimodal PGNPs with the same core shape but different sizes were obtained. By adjusting the amounts of oM
bimodal PGNPs with the same core weight but different shapes (cylindrical or spherical) were obtained. These nanoparticles are ideal model models for studying the relationship between the microstructures and properties of polymer nanocomposites.
嵌段共聚物聚合物接枝纳米粒子二氧化硅双分布刷
Block copolymerPolymer grafted nanoparticlesSilica dioxideBimodal brushes
Gilman J. Appl Clay Sci, 1999, 15: 31-49. doi:10.1016/s0169-1317(99)00019-8http://dx.doi.org/10.1016/s0169-1317(99)00019-8
Winey K I, Kashiwagi T, Mu M. MRS Bulletin, 2007, 32(4): 348-353. doi:10.1557/mrs2007.234http://dx.doi.org/10.1557/mrs2007.234
Choudalakis G, Gotsis A. Eur Polym J, 2009, 45(4): 967-984. doi:10.1016/j.eurpolymj.2009.01.027http://dx.doi.org/10.1016/j.eurpolymj.2009.01.027
Kumar S K, Jouault N, Benicewicz B, Neely T. Macromolecules, 2013, 46(9): 3199-3214. doi:10.1021/ma4001385http://dx.doi.org/10.1021/ma4001385
Hashemi A, Jouault N, Williams G A, Zhao D, Cheng K J, Kysar J W, Guan Z, Kumar S K. Nano Lett, 2015, 15(8): 5465-5471. doi:10.1021/acs.nanolett.5b01859http://dx.doi.org/10.1021/acs.nanolett.5b01859
Zhao D, Ge S, Senses E, Akcora P, Jestin J, Kumar S K. Macromolecules, 2015, 48(15): 5433-5438. doi:10.1021/acs.macromol.5b00962http://dx.doi.org/10.1021/acs.macromol.5b00962
Li Shaofan(李少范), Wen Xiangning(温向宁), Ju Weilong(鞠维龙), Su Yunlan(苏允兰), Wang Dujin(王笃金). Acta Polymerica Sinica(高分子学报), 2021, 52(2): 146-157. doi:10.11777/j.issn1000-3304.2020.20189http://dx.doi.org/10.11777/j.issn1000-3304.2020.20189
Hu S N, Lin Y, Wu G Z. Chinese J Polym Sci, 2020, 38(1): 100-108. doi:10.1007/s10118-019-2300-6http://dx.doi.org/10.1007/s10118-019-2300-6
Pandey Y N, Papakonstantopoulos G J, Doxastakis M. Macromolecules, 2013, 46(13): 5097-5106. doi:10.1021/ma400444whttp://dx.doi.org/10.1021/ma400444w
Li C, Benicewicz B C. Macromolecules, 2005, 38(14): 5929-5936. doi:10.1021/ma050216rhttp://dx.doi.org/10.1021/ma050216r
Li C, Han J, Ryu C Y, Benicewicz B C. Macromolecules, 2006, 39(9): 3175-3183. doi:10.1021/ma051983thttp://dx.doi.org/10.1021/ma051983t
Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok H A. Chem Rev, 2009, 109(11): 5437-5527. doi:10.1021/cr900045ahttp://dx.doi.org/10.1021/cr900045a
Akcora P, Liu H, Kumar S K, Moll J, Li Y, Benicewicz B C, Schadler L S, Acehan D, Panagiotopoulos A Z, Pryamitsyn V, Ganesan V, Ilavsky J, Thiyagarajan P, Colby R H, Douglas J F. Nat Mater, 2009, 8(4): 354-359. doi:10.1038/nmat2404http://dx.doi.org/10.1038/nmat2404
Sunday D, Ilavsky J, Green D L. Macromolecules, 2012, 45(9): 4007-4011. doi:10.1021/ma300438ghttp://dx.doi.org/10.1021/ma300438g
Green D L, Mewis J. Langmuir, 2006, 22(23): 9546-9553. doi:10.1021/la061136zhttp://dx.doi.org/10.1021/la061136z
Harton S E, Kumar S K. J Polym Sci, Part B: Polym Phys, 2008, 46(4): 351-358. doi:10.1002/polb.21346http://dx.doi.org/10.1002/polb.21346
Ganesan V, Ellison C J, Pryamitsyn V. Soft Matter, 2010, 6(17): 4010-4025. doi:10.1039/b926992dhttp://dx.doi.org/10.1039/b926992d
Meng D, Kumar S K, Lane J M D, Grest G S. Soft Matter, 2012, 8(18): 5002-5010. doi:10.1039/c2sm07395ahttp://dx.doi.org/10.1039/c2sm07395a
Martin T B, Jayaraman A. Macromolecules, 2013, 46(22): 9144-9150. doi:10.1021/ma401763yhttp://dx.doi.org/10.1021/ma401763y
Jayaraman A. J Polym Sci, Part B: Polym Phys, 2013, 51(7): 524-534. doi:10.1002/polb.23260http://dx.doi.org/10.1002/polb.23260
Martin T B, Jayaraman A. J Polym Sci, Part B: Polym Phys, 2014, 52(24): 1661-1668. doi:10.1002/polb.23517http://dx.doi.org/10.1002/polb.23517
Shi D W, Lai X L, Jiang Y P, Yan C, Liu Z Y, Yang W, Yang M B. Chinese J Polym Sci, 2019, 37(3): 216-226. doi:10.1007/s10118-019-2191-6http://dx.doi.org/10.1007/s10118-019-2191-6
Mansoori Y, Roojaei K, Zamanloo M R, Imanzadeh G. Chinese J Polym Sci, 2012, 30(6): 815-823. doi:10.1007/s10118-012-1188-1http://dx.doi.org/10.1007/s10118-012-1188-1
Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T. Surface-Initiated Polymerization I. “Berlin, Heidelberg: Springer,” 2006. 1-45. doi:10.1007/12_063http://dx.doi.org/10.1007/12_063
Hui C M, Pietrasik J, Schmitt M, Mahoney C, Choi J, Bockstaller M R, Matyjaszewski K. Chem Mater, 2014, 26(1): 745-762. doi:10.1021/cm4023634http://dx.doi.org/10.1021/cm4023634
Lin H C, Li C C, Lee J T. J Power Sources, 2011, 196(19): 8098-8103. doi:10.1016/j.jpowsour.2011.05.037http://dx.doi.org/10.1016/j.jpowsour.2011.05.037
Tao P, Li Y, Rungta A, Viswanath A, Gao J, Benicewicz B C, Siegel R W, Schadler L S. J Mater Chem, 2011, 21(46): 18623-18629. doi:10.1039/c1jm13093ehttp://dx.doi.org/10.1039/c1jm13093e
Lindenblatt G, Schärtl W, Pakula T, Schmidt M. Macromolecules, 2000, 33(25): 9340-9347. doi:10.1021/ma001328fhttp://dx.doi.org/10.1021/ma001328f
Blencowe A, Tan J F, Goh T K, Qiao G G. Polymer, 2009, 50(1): 5-32. doi:10.1016/j.polymer.2008.09.049http://dx.doi.org/10.1016/j.polymer.2008.09.049
Gao H, Matyjaszewski K. Prog Polym Sci, 2009, 34(4): 317-350. doi:10.1016/j.progpolymsci.2009.01.001http://dx.doi.org/10.1016/j.progpolymsci.2009.01.001
Gao H, Ohno S, Matyjaszewski K. J Am Chem Soc, 2006, 128(47): 15111-15113. doi:10.1021/ja066964thttp://dx.doi.org/10.1021/ja066964t
Gao H, Matyjaszewski K. Macromolecules, 2007, 40(3): 399-401. doi:10.1021/ma062640dhttp://dx.doi.org/10.1021/ma062640d
Qiao Y, Yin X, Wang L, Islam M S, Benicewicz B C, Ploehn H J, Tang C. Macromolecules, 2015, 48(24): 8998-9006. doi:10.1021/acs.macromol.5b02018http://dx.doi.org/10.1021/acs.macromol.5b02018
Rungta A, Natarajan B, Neely T, Dukes D, Schadler L S, Benicewicz B C. Macromolecules, 2012, 45(23): 9303-9311. doi:10.1021/ma3018876http://dx.doi.org/10.1021/ma3018876
Yan J, Kristufek T, Schmitt M, Wang Z, Xie G, Dang A, Hui C M, Pietrasik J, Bockstaller M R, Matyjaszewski K. Macromolecules, 2015, 48(22): 8208-8218. doi:10.1021/acs.macromol.5b01905http://dx.doi.org/10.1021/acs.macromol.5b01905
Bates F S, Fredrickson G H. Phys Today, 1999, 52(2): 32-38. doi:10.1063/1.882522http://dx.doi.org/10.1063/1.882522
Zhang K, Gao L, Chen Y. Macromolecules, 2007, 40(16): 5916-5922. doi:10.1021/ma070780xhttp://dx.doi.org/10.1021/ma070780x
Zhang K, Gao L, Chen Y. Macromolecules, 2008, 41(5): 1800-1807. doi:10.1021/ma7021698http://dx.doi.org/10.1021/ma7021698
Chen Y. Macromolecules, 2012, 45(6): 2619-2631. doi:10.1021/ma201495mhttp://dx.doi.org/10.1021/ma201495m
Tanaka H, Hashimoto T. Macromolecules, 1991, 24(20): 5713-5720. doi:10.1021/ma00020a035http://dx.doi.org/10.1021/ma00020a035
Koizumi S, Hasegawa H, Hashimoto T. Macromolecules, 1994, 27(22): 6532-6540. doi:10.1021/ma00100a044http://dx.doi.org/10.1021/ma00100a044
Koizumi S, Hasegawa H, Hashimoto T. Macromolecules, 1994, 27(26): 7893-7906. doi:10.1021/ma00104a053http://dx.doi.org/10.1021/ma00104a053
Hashimoto T, Koizumi S, Hasegewa H. Physica B: Condens Matter, 1995, 213676-681
Bodycomb J, Yamaguchi D, Hashimoto T. Macromolecules, 2000, 33(14): 5187-5197. doi:10.1021/ma9917996http://dx.doi.org/10.1021/ma9917996
Ruan Y, Gao L, Yao D, Zhang K, Zhang B, Chen Y, Liu C Y. ACS Macro Lett, 2015, 4(10): 1067-1071. doi:10.1021/acsmacrolett.5b00408http://dx.doi.org/10.1021/acsmacrolett.5b00408
0
Views
104
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution