浏览全部资源
扫码关注微信
超分子结构与材料国家重点实验室 吉林大学化学学院 长春 130012
Jiang-hua He, E-mail: hjh2015@jlu.edu.cn
Yue-tao Zhang, E-mail: ytzhang2009@jlu.edu.cn
Published:20 September 2022,
Published Online:19 July 2022,
Received:04 April 2022,
Accepted:07 May 2022
移动端阅览
宋艳娇,何江华,张越涛.基于氮杂环烯烃的Lewis酸碱对催化二氢香豆素基聚酯合成的机理研究[J].高分子学报,2022,53(09):1112-1122.
Song Yan-jiao,He Jiang-hua,Zhang Yue-tao.Mechanistic Study on the Synthesis of Dihydrocoumarin-based Polyester Catalyzed by N-Heterocyclic Olefins-based Lewis Pairs[J].ACTA POLYMERICA SINICA,2022,53(09):1112-1122.
宋艳娇,何江华,张越涛.基于氮杂环烯烃的Lewis酸碱对催化二氢香豆素基聚酯合成的机理研究[J].高分子学报,2022,53(09):1112-1122. DOI: 10.11777/j.issn1000-3304.2022.22111.
Song Yan-jiao,He Jiang-hua,Zhang Yue-tao.Mechanistic Study on the Synthesis of Dihydrocoumarin-based Polyester Catalyzed by N-Heterocyclic Olefins-based Lewis Pairs[J].ACTA POLYMERICA SINICA,2022,53(09):1112-1122. DOI: 10.11777/j.issn1000-3304.2022.22111.
通过选用氮杂环烯烃(NHO)和三乙基硼(TEB)作为二元协同催化剂,实现了3
4-二氢香豆素(DHC)与环氧化合物在Lewis酸碱对聚合体系作用下的交替共聚. 对比研究了酸碱催化剂的取代基变化对于催化活性、交替共聚的化学选择性、环氧开环的区域选择性的影响;另外,通过活性物种结构表征、MALDI-TOF MS端基分析以及核磁反应等,深入研究了NHO的环外双键不同甲基取代情况对于聚合机理的影响,从而筛选获得具有独特的非对称双头引发能力的NHO2-DHC/TEB体系,且证明了该体系同时可以实现分子内酯交换反应的完全抑制,避免了环状聚酯副产物的产生,从而实现双头引发获得DHC基线形聚酯材料可控合成,为聚酯基三嵌段聚合物、热塑性弹性体等高效合成提供基础.
To alleviate the energy and environment pressures resulted from the consumption of petroleum-based polymers
it is of great significance to synthesize the bio-based polyesters with degradability
sustainability and environmental friendliness. Various types of polymerization methods have been developed to accomplish such synthesis. Here it is shown that Lewis pair composed of
N
-heterocyclic olefin (NHO) and organic boron to synergistically catalyze the alternating copolymerization of 3
4-dihydrocoumarin (DHC) and epoxide by Lewis pair polymerization (LPP) for the first time. The effects of the substituents of Lewis ac
ids (LA) and Lewis bases (LB) on the catalytic activity
chemoselectivity of alternating copolymerization versus homopolymerization of epoxides
regioselectivity of epoxides have been systematically studied. It turned out that the weaker acidity of BEt
3
is beneficial for the alternating copolymerization activity relative to BPh
3
and B(C
6
F
5
)
3
. After heating at 80-100 °C
such LPP system can achieve 52%-97% conversion of DHC in 12 h
89%-100% polyester selectivity and 93%-97% regioselectivity. In combination with the experimental details including the identification of active species and mono-initiator
MALDI-TOF MS analysis of low molecular weight polyesters
and NMR reactions
the influences of exocyclic double bond of NHO with varying methyl substitution on polymerization mechanism were studied thoroughly. It turned out that NHO1 with two methyl groups substituted at the exocyclic double bond initiates the polymerization
via
alkaline
whereas NHO2 with one methyl group substituted at the exocyclic double bond initiates the polymerization
via
nucleophilicity. It is noted that the NHO2-DHC/TEB LP exhibit a unique
asymmetric dual initiation capability of synthesizing linear polyesters. Due to the complete inhibition of intramolecular transesterification by NHO2-DHC/TEB LP
there is no formation of cyclic polyester by-products
thus realizing the controllable synthesis of dual-initiated linear polyesters. This strategy provides important experimental and theoretic foundation to the rapid synthesis of DHC related polyester-based triblock polymers
thermoplastic elastomers and
etc.
Lewis酸碱对交替共聚生物基聚酯
Lewis pairAlternating copolymerizationBio-based polyester
Scharfenberg M, Hilf J, Frey H. Adv Funct Mater, 2018, 28(10): 1704302. doi:10.1002/adfm.201704302http://dx.doi.org/10.1002/adfm.201704302
Wanamaker C L, Tolman W B, Hillmyer M A. Biomacromolecules, 2009, 10(2): 443-448. doi:10.1021/bm801292vhttp://dx.doi.org/10.1021/bm801292v
Schneiderman D K, Hillmyer M A. Macromolecules, 2016, 49(7): 2419-2428. doi:10.1021/acs.macromol.6b00211http://dx.doi.org/10.1021/acs.macromol.6b00211
Longo J M, Sanford M J, Coates G W. Chem Rev, 2016, 116(24): 15167-15197. doi:10.1021/acs.chemrev.6b00553http://dx.doi.org/10.1021/acs.chemrev.6b00553
Ryzhakov D, Printz G, Jacques B, Messaoudi S, Dumas F, Dagorne S, Le Bideau F. Polym Chem, 2021, 12(20):2932-2946. doi:10.1039/d1py00020ahttp://dx.doi.org/10.1039/d1py00020a
Huang J, Worch J C, Dove A P, Coulembier O. ChemSusChem, 2020, 13(3): 469-487. doi:10.1002/cssc.201902719http://dx.doi.org/10.1002/cssc.201902719
Paul S, Zhu Y, Romain C, Brooks R, Saini P K, Williams C K. Chem Commun, 2015, 51(30): 6459-6479. doi:10.1039/c4cc10113hhttp://dx.doi.org/10.1039/c4cc10113h
Klaus S, Lehenmeier M W, Anderson C E, Rieger B. Coord Chem Rev, 2011, 255(13-14): 1460-1479. doi:10.1016/j.ccr.2010.12.002http://dx.doi.org/10.1016/j.ccr.2010.12.002
Plajer A J, Williams C K. Angew Chem Int Ed, 2022, 61(1): e202104495
Liang X, Tan F, Zhu Y. Front Chem, 2021, 9: 647245. doi:10.3389/fchem.2021.647245http://dx.doi.org/10.3389/fchem.2021.647245
Olson D A, Gratton S E A, DeSimone J M, Deckwer W D. J Am Chem Soc, 2006, 128(41): 13625-13633. doi:10.1021/ja063092mhttp://dx.doi.org/10.1021/ja063092m
Müller R J, Kleeberg I, Deckwer W D. J Biotechnol, 2001, 86(2): 87-95. doi:10.1016/s0168-1656(00)00407-7http://dx.doi.org/10.1016/s0168-1656(00)00407-7
Brown A H, Sheares V V. Macromolecules, 2007, 40(14): 4848-4853. doi:10.1021/ma070185vhttp://dx.doi.org/10.1021/ma070185v
Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick Jr. W J, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski, T. Science, 2006, 311(5760): 484-489. doi:10.1126/science.1114736http://dx.doi.org/10.1126/science.1114736
Gross R A, Kalra B. Science, 2002, 297(5582): 803-807. doi:10.1126/science.297.5582.803http://dx.doi.org/10.1126/science.297.5582.803
Hillmyer M A, Tolman W B. Acc Chem Res, 2014, 47(8): 2390-2396. doi:10.1021/ar500121dhttp://dx.doi.org/10.1021/ar500121d
Vert M. Biomacromolecules, 2005, 6(2): 538-546. doi:10.1021/bm0494702http://dx.doi.org/10.1021/bm0494702
Xiong M, Schneiderman D K, Bates F S, Hillmyer M A, Zhang K. Proc Natl Acad Sci, 2014, 111(23): 8357-8362. doi:10.1073/pnas.1404596111http://dx.doi.org/10.1073/pnas.1404596111
Cywar R M, Rorrer N A, Hoyt C B, Beckham G T, Chen E Y X. Nat Rev Mater, 2021, 7(2): 83-103. doi:10.1038/s41578-021-00363-3http://dx.doi.org/10.1038/s41578-021-00363-3
Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Prog Polym Sci, 2021, 120:101430. doi:10.1016/j.progpolymsci.2021.101430http://dx.doi.org/10.1016/j.progpolymsci.2021.101430
Li M, Tao Y, Tang J, Wang Y, Zhang X, Tao Y, Wang X. J Am Chem Soc, 2019, 141(1): 281-289. doi:10.1021/jacs.8b09739http://dx.doi.org/10.1021/jacs.8b09739
He Wenjing(和文婧), Tao Youhua(陶友华). Acta Polymerica Sinica(高分子学报), 2020, 51(10): 1083-1091. doi:10.11777/j.issn1000-3304.2020.20094http://dx.doi.org/10.11777/j.issn1000-3304.2020.20094
Boisde P M, Meuly W C. Coumarin, Kirk-Othmer Encyclopedia of Chemical Technology. Hoboken: John Wiley & Sons, 2000. 1-11
van Zee N J, Coates G W. Chem Commun, 2014, 50(48): 6322-6325. doi:10.1039/c4cc01566ehttp://dx.doi.org/10.1039/c4cc01566e
Uenishi K, Sudo A, Endo T. Macromolecules, 2007, 40(18): 6535-6539. doi:10.1021/ma070433nhttp://dx.doi.org/10.1021/ma070433n
Sudo A, Uenishi K, Endo T. J Polym Sci, Part A: Polym Chem, 2007, 45(16): 3798-3802. doi:10.1002/pola.22096http://dx.doi.org/10.1002/pola.22096
Liu Y, Guo J Z, Lu H W, Wang H B, Lu X B. Macromolecules, 2018, 51(3): 771-778. doi:10.1021/acs.macromol.7b02042http://dx.doi.org/10.1021/acs.macromol.7b02042
Hu S, Dai G, Zhao J, Zhang G. Macromolecules, 2016, 49(12): 4462-4472. doi:10.1021/acs.macromol.6b00840http://dx.doi.org/10.1021/acs.macromol.6b00840
Zhang H, Hu S, Zhao J, Zhang G. Macromolecules, 2017, 50(11): 4198-4205. doi:10.1021/acs.macromol.7b00599http://dx.doi.org/10.1021/acs.macromol.7b00599
Hong M, Chen J, Chen E Y X. Chem Rev, 2018, 118(20): 10551-10616. doi:10.1021/acs.chemrev.8b00352http://dx.doi.org/10.1021/acs.chemrev.8b00352
McGraw M L, Chen E Y X. Macromolecules, 2020, 53(15): 6102-6122. doi:10.1021/acs.macromol.0c01156http://dx.doi.org/10.1021/acs.macromol.0c01156
Wan Y, He J, Zhang Y, Chen E Y X. Angew Chem Int Ed, 2022, 61(8): e202114946
Zhang Z H, Wang X, Wang X J, Li Y, Hong M. Macromolecules, 2021, 54(18): 8495-8502. doi:10.1021/acs.macromol.1c01356http://dx.doi.org/10.1021/acs.macromol.1c01356
Zhao W, Li F, Li C, He J, Zhang Y, Chen C. Angew Chem Int Ed, 2021, 60(45): 24306-24311. doi:10.1002/anie.202111336http://dx.doi.org/10.1002/anie.202111336
McGraw M L, Clarke R W, Chen E Y X. J Am Chem Soc, 2021, 143(9): 3318-3322. doi:10.1021/jacs.1c00561http://dx.doi.org/10.1021/jacs.1c00561
Bai Y, Wang H, He J, Zhang Y, Chen E Y X. Nat Commun, 2021, 12(1): 4874. doi:10.1038/s41467-021-25069-6http://dx.doi.org/10.1038/s41467-021-25069-6
Wang X, Hong M. Macromolecules, 2020, 53(12): 4659-4669. doi:10.1021/acs.macromol.0c00553http://dx.doi.org/10.1021/acs.macromol.0c00553
Bai Y, Wang H, He J, Zhang Y. Angew Chem Int Ed, 2020, 59(28): 11613-11619. doi:10.1002/anie.202004013http://dx.doi.org/10.1002/anie.202004013
Zhao W, He J, Zhang Y. Sci Bull, 2019, 64(24): 1830-1840. doi:10.1016/j.scib.2019.08.025http://dx.doi.org/10.1016/j.scib.2019.08.025
Zhang P, Zhou H, Lu X B. Macromolecules, 2019, 52(12): 4520-4525. doi:10.1021/acs.macromol.9b00652http://dx.doi.org/10.1021/acs.macromol.9b00652
Wang Q, Zhao W, Zhang S, He J, Zhang Y, Chen E Y X. ACS Catal, 2018, 8(4): 3571-3578. doi:10.1021/acscatal.8b00333http://dx.doi.org/10.1021/acscatal.8b00333
Hosoi Y, Takasu A, Matsuoka S, Hayashi M. J Am Chem Soc, 2017, 139(42): 15005-15012. doi:10.1021/jacs.7b06897http://dx.doi.org/10.1021/jacs.7b06897
Bai Yun(白云), Zhang Yuetao(张越涛). Acta Polymerica Sinica(高分子学报), 2019, 50(3): 233-246. doi:10.11777/j.issn1000-3304.2019.18269http://dx.doi.org/10.11777/j.issn1000-3304.2019.18269
Walther P, Krauß A, Naumann S. Angew Chem Int Ed, 2019, 58(31): 10737-10741. doi:10.1002/anie.201904806http://dx.doi.org/10.1002/anie.201904806
Wang Q, Zhao W, He J, Zhang Y, Chen E Y X. Macromolecules, 2017, 50(1): 123-136. doi:10.1021/acs.macromol.6b02398http://dx.doi.org/10.1021/acs.macromol.6b02398
Piedra-Arroni E, Ladavière C, Amgoune A, Bourissou D. J Am Chem Soc, 2013, 135(36): 13306-13309. doi:10.1021/ja4069968http://dx.doi.org/10.1021/ja4069968
Wang B, Pan L, Ma Z, Li Y. Macromolecules, 2018, 51(3): 836-845. doi:10.1021/acs.macromol.7b02378http://dx.doi.org/10.1021/acs.macromol.7b02378
Li X Q, Wang B, Ji H Y, Li Y S. Catal Sci Technol, 2016, 6(21): 7763-7772. doi:10.1039/c6cy01587ehttp://dx.doi.org/10.1039/c6cy01587e
Wang B, Wei Y, Li Z J, Pan L, Li Y S. ChemCatChem, 2018, 10(22): 5287-5296. doi:10.1002/cctc.201801488http://dx.doi.org/10.1002/cctc.201801488
Ji H Y, Wang B, Pan L, Li Y S. Green Chem, 2018, 20(3): 641-648. doi:10.1039/c7gc03261ghttp://dx.doi.org/10.1039/c7gc03261g
Ji H Y, Chen X L, Wang B, Pan L, Li Y S. Green Chem, 2018, 20(17): 3963-3973. doi:10.1039/c8gc01641khttp://dx.doi.org/10.1039/c8gc01641k
Wang Y, Zhang J Y, Yang J L, Zhang H K, Kiriratnikom J, Zhang C J, Chen K L, Cao X H, Hu L F, Zhang X H, Tang B Z. Macromolecules, 2021, 54(5): 2178-2186. doi:10.1021/acs.macromol.0c02377http://dx.doi.org/10.1021/acs.macromol.0c02377
Yang J, Wang H, Hu L, Hong X, Zhang X. Polym Chem, 2019, 10(48): 6555-6560. doi:10.1039/c9py01371ghttp://dx.doi.org/10.1039/c9py01371g
Wang Bin(王彬), Ji Heyuan(季鹤源), Li Yuesheng(李悦生). Acta Polymerica Sinica(高分子学报), 2020, 51(10):1104-1120. doi:10.11777/j.issn1000-3304.2020.20111http://dx.doi.org/10.11777/j.issn1000-3304.2020.20111
Wang Ying(王莹), Zhang Chengjian(张成建), Wang Zhengwen(王征文), Zhang Xinghong(张兴宏). Acta Polymerica Sinica(高分子学报), 2021, 52(5): 499-504. doi:10.11777/j.issn1000-3304.2020.20269http://dx.doi.org/10.11777/j.issn1000-3304.2020.20269
Liu Q, Yang L, Yao C, Geng J, Wu Y, Hu X. Org Lett, 2021, 23(9): 3685-3690. doi:10.1021/acs.orglett.1c01073http://dx.doi.org/10.1021/acs.orglett.1c01073
Massey A G, Park A J. J Organomet Chem, 1964, 3(3): 245-250. doi:10.1016/s0022-328x(00)80518-5http://dx.doi.org/10.1016/s0022-328x(00)80518-5
Zhao W, Wang Q, He J, Zhang Y. Polym Chem, 2019, 10(31): 4328-4335. doi:10.1039/c9py00626ehttp://dx.doi.org/10.1039/c9py00626e
Walther P, Frey W, Naumann S. Polym Chem, 2018, 9(26): 3674-3683. doi:10.1039/c8py00784ehttp://dx.doi.org/10.1039/c8py00784e
Li H, Zhao J, Zhang G. ACS Macro Lett, 2017, 6(10): 1094-1098. doi:10.1021/acsmacrolett.7b00654http://dx.doi.org/10.1021/acsmacrolett.7b00654
Ji H Y, Wang B, Pan L, Li Y S. Angew Chem Int Ed, 2018, 57(51): 16888-16892. doi:10.1002/anie.201810083http://dx.doi.org/10.1002/anie.201810083
0
Views
146
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution