Construction of antibacterial surface coating is an ideal way to solve iatrogenic infection caused by adhesion growth bacteria on the surface of medical devices. Therefore
in this study
chitosan/silk nanofiber (CHI/SNF) multilayer film is prepared by layer-by-layer self-assembly technology with electrostatic interaction as the driving force. The assembly process of this multilayer film is traced by an ultraviolet spectrophotometer (UV-Vis)
and its morphology is analyzed using scanning electron microscopy (SEM). Then
BBR-CHI/SNF multilayer film is obtained by introducing the natural antibacterial berberine (BBR). The
in vitro
drug release behavior and antibacterial activity against
S. aureus
and
P. aeruginosa
. The test results show that the drug loading of the multilayer film can be controlled by adjusting the number of layers. The multilayer film has anti-bacte
rial adhesion and certain antibacterial performance. After loading BBR
through the synergistic effect of BBR and CHI in multilayer
the antibacterial performance is improved and the growth of
S. aureus
and
P. aeruginosa
is inhibited
with the inhibition rates of (59.62±4.28)% and (51.65±3.77)%
respectively. In conclusion
we have successfully constructed a drug loading multilayer film with both antibacterial and anti-bacterial adhesion functions. This multilayer film is easily prepared and its properties are easy to control and flexible substrate. Therefore
it has good prospects for application in the field of antibacterial on the surface of biomedical materials.
关键词
层层自组装壳聚糖丝素纳米纤维小檗碱抗菌
Keywords
Layer by layer self-assemblyChitosanSilk nanofiberBerberineAntibacterial property
references
Aduba D, An S S, Selders G S, Wang J, Hu Y. J Biomed Mater Res, Part A, 2016, 104(10): 2456-2465. doi:10.1002/jbm.a.35783http://dx.doi.org/10.1002/jbm.a.35783
Rui H, Chen F L, Yang Y W, Cheng X B, Gao Z, OuYang H W, Wu W, Mao T Q. J Biomed Mater Res, Part A, 2010, 80A(1): 85-93
Xu X H, Yang X, Zheng C G, Cui Y. Regen Med, 2020, 15(5): 1637-1645. doi:10.2217/rme-2019-0135http://dx.doi.org/10.2217/rme-2019-0135
Inoue H, Fujimoto K, Uyama Y, Ikada Y. J Biomed Mater Res, 1997, 35(2): 255-264. doi:10.1002/(sici)1097-4636(199705)35:2<255::aid-jbm13>3.0.co;2-ghttp://dx.doi.org/10.1002/(sici)1097-4636(199705)35:2<255::aid-jbm13>3.0.co;2-g
Narayan R J, Roeder R K. JOM, 2009, 61(9): 13. doi:10.1007/s11837-009-0125-4http://dx.doi.org/10.1007/s11837-009-0125-4
Arciola C R, An Y H, Campoccia D, Donati M E, Montanaro L. Int J Artif Organs, 2005, 28(11): 1091-1100. doi:10.1177/039139880502801106http://dx.doi.org/10.1177/039139880502801106
Zhao C W, Zhou L, Chiao M, Yang W T. Adv Colloid Interface Sci, 2020, 285: 102280. doi:10.1016/j.cis.2020.102280http://dx.doi.org/10.1016/j.cis.2020.102280
Liu T W, Yan S J, Zhou R T, Zhang X, Yang H W, Yan Q Y, Yang R, Luan S F. ACS Appl Mater Interfaces, 2020, 12(38): 42576-42585. doi:10.1021/acsami.0c13413http://dx.doi.org/10.1021/acsami.0c13413
Wang Xuebin(王学斌), Xue Yuan(薛源), Zhou Yaowu(周耀武), Chen Shengyi(陈声毅), Bao Chunyan(包春燕), Zhu Linyong(朱麟勇). Acta Polymerica Sinica(高分子学报), 2022, 53(2): 133-144
Zhou C, Zhou J T, Sheng C J, Pranantyo D, Pan Y, Huang X J. Chinese J Polym Sci, 2021, 39(4): 425-440. doi:10.1007/s10118-021-2513-3http://dx.doi.org/10.1007/s10118-021-2513-3
Sarode A, Annapragada A, Guo J, Mitragotri S. Biomaterials, 2020, 242: 119929. doi:10.1016/j.biomaterials.2020.119929http://dx.doi.org/10.1016/j.biomaterials.2020.119929
Cho Y, Lee J B, Hong J. Sci Rep, 2014, 4: 4078. doi:10.1038/srep04078http://dx.doi.org/10.1038/srep04078
Poojari R, Kini S, Srivastava R, Panda D. Colloids Surf, B, 2016, 143: 131-138. doi:10.1016/j.colsurfb.2016.03.024http://dx.doi.org/10.1016/j.colsurfb.2016.03.024
Decher G. Science, 1997, 277(5330): 1232-1237. doi:10.1126/science.277.5330.1232http://dx.doi.org/10.1126/science.277.5330.1232
Iler R K. J Colloid Interface Sci, 1966, 21(6): 569-594. doi:10.1016/0095-8522(66)90018-3http://dx.doi.org/10.1016/0095-8522(66)90018-3
Shende P, Patil A, Prabhakar B. J Drug Delivery Sci Technol, 2020, 56: 101519. doi:10.1016/j.jddst.2020.101519http://dx.doi.org/10.1016/j.jddst.2020.101519
Zhang Y X, Ma J Z, Xu Q N. Colloids Surf, B, 2019, 178: 439-444. doi:10.1016/j.colsurfb.2019.03.017http://dx.doi.org/10.1016/j.colsurfb.2019.03.017
Howling G I, Dettmar P W, Goddard P A, Hampson F C, Dornish M, Wood E J. Biomaterials, 2001, 22(22): 2959-2966. doi:10.1016/s0142-9612(01)00042-4http://dx.doi.org/10.1016/s0142-9612(01)00042-4
Tsai G J, Hwang S P. Fish Sci, 2004, 70: 675-681. doi:10.1111/j.1444-2906.2004.00856.xhttp://dx.doi.org/10.1111/j.1444-2906.2004.00856.x
Younes I, Rinaudo M. Mar Drugs, 2015, 13(3): 1133-1174. doi:10.3390/md13031133http://dx.doi.org/10.3390/md13031133
Li J H, Zhuang S L. Eur Polym J, 2020, 138(1): 109984. doi:10.1016/j.eurpolymj.2020.109984http://dx.doi.org/10.1016/j.eurpolymj.2020.109984
Chung Y C, Chen C Y. Bioresour Technol, 2008, 99(8): 2806-2814. doi:10.1016/j.biortech.2007.06.044http://dx.doi.org/10.1016/j.biortech.2007.06.044
Andres Y, Giraud L, Gerente C, Cloirec P L. Environ Technol, 2007, 28(12): 1357-1363. doi:10.1080/09593332808618893http://dx.doi.org/10.1080/09593332808618893
Ling S J, Qin Z, Li C M, Huang W W, Kaplan D L, Buehler M J. Nat Commun, 2017, 8(1): 1387. doi:10.1038/s41467-017-00613-5http://dx.doi.org/10.1038/s41467-017-00613-5
Bai S M, Zhang X L, Lu Q, Sheng W Q, Liu L J, Dong B J, Kaplan D L, Zhu H S. Biomacromolecules, 2014, 15(8): 3044-3051. doi:10.1021/bm500662zhttp://dx.doi.org/10.1021/bm500662z
Zhang F, You X R, Dou H, Liu Z, Zuo B Q, Zhang X G. ACS Appl Mater Interfaces, 2015, 7(5): 3352. doi:10.1021/am508319hhttp://dx.doi.org/10.1021/am508319h
Farasatkia A, Kharaziha M, Ashrafizadeh F, Salehi S. Mater Sci Eng: C, 2021, 120: 111744. doi:10.1016/j.msec.2020.111744http://dx.doi.org/10.1016/j.msec.2020.111744
Liu X T, Zhang W L, Lin Z F, Meng Z H, Shi C Y, Xu Z J, Yang L K, Liu X Y. Small Methods, 2021, 5: 2000926. doi:10.1002/smtd.202000926http://dx.doi.org/10.1002/smtd.202000926
Crosslinking Kinetics and Application of Chitosan-Genipin Nanogel
Construction of High Performance Chitosan Based Solid State Ion Thermoelectric Battery and Thermoelectric Performance
Polysaccharide Based Injectable Self-healing Hydrogels with Glucose Responsive Drug Release Behavior
Related Author
Xin-yue Zhao
Pei-tong Li
Yan-hua Liu
Bing Hu
Yong-gang Liu
Quan Chen
Jiu-yang Wei
Jin-dong Hu
Related Institution
College of Food Science and Technology, Nanjing Agricultural University
School of Applied Chemistry and Engineering, Univerdity of Science and Technology of China
State Kay Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Materials Science and Engineering, Northeast Forestry University
Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University