浏览全部资源
扫码关注微信
1.上海交通大学化学化工学院 转化分子前沿科学中心 氢科学中心 物理科学原位中心 上海 200240
2.含氟功能膜材料国家重点实验室 淄博 256401
Feng Liu; E-mail: fengliu82@sjtu.edu.cn
Published:20 December 2022,
Published Online:06 September 2022,
Received:11 April 2022,
Accepted:23 May 2022
移动端阅览
宋静楠,詹俊哲,张明等.功能薄膜形貌表征技术[J].高分子学报,2022,53(12):1552-1566.
Song Jing-nan,Zhan Jun-zhe,Zhang Ming,et al.Morphology Characterization Techniques of Functional Thin Films[J].ACTA POLYMERICA SINICA,2022,53(12):1552-1566.
宋静楠,詹俊哲,张明等.功能薄膜形貌表征技术[J].高分子学报,2022,53(12):1552-1566. DOI: 10.11777/j.issn1000-3304.2022.22118.
Song Jing-nan,Zhan Jun-zhe,Zhang Ming,et al.Morphology Characterization Techniques of Functional Thin Films[J].ACTA POLYMERICA SINICA,2022,53(12):1552-1566. DOI: 10.11777/j.issn1000-3304.2022.22118.
功能薄膜在光电器件、燃料电池、储能电池、气体分离、微电子及生物医学等领域表现出极大的应用潜力
成为学术界和工业界的研究重点. 理解薄膜内部形貌形成机理,调控结晶行为和相分离结构,是提高薄膜器件性能的重要途径. 散射技术,包括同步辐射X射线广角/小角散射(GIWAXS/GISAXS)、小角中子散射(SANS)、共振软X射线散射(RSoXS),作为表征薄膜内部微纳结构的有效手段,不仅可以研究薄膜材料的结晶行为,包括结晶强度、分子堆积方式和取向性质,还可以研究薄膜内的相分离行为和界面取向与粗糙度等结构细节. 同时,原位散射技术可以实时检测薄膜形貌的形成过程,对理解非平衡态形貌形成机制具有重要意义. 本文不仅总结了GIWAXS、GISAXS、SANS、RSoXS和原位散射技术的基本工作原理,还通过经典案例详尽地介绍了各形貌表征技术的功能和数据解析过程,为科研工作者快速选择合适的形貌表征技术提供指导作用.
The functional thin films have great application potential in the field of optoelectronic device
fuel cells
energy storage cells
gas separation
microelectronics and biomedicine
thus becoming the research focus of academia and industry. Understanding the mechanism of morphology evolution
controlling the crystallization properties and phase separation structure are critical in improving device performance. However
in most cases
traditional morphology characterization techniques
such as transmission electron microscopy (TEM) and atomic force microscopy (AFM)
failed to describe the morphology and phase separation structure of blend films due to the limited resolution. The emergence of advanced X-ray and Neutron scattering techniques can solve this problem well
allowing us to deeply understand the structure-performance correlations and providing constructive instructions to optimize device performance. For example
grazing incidence wide-angle X-ray scattering (GIWAXS) can be used to characterize crystallization behavior
and provide more detailed crystallization information
such as crystallinity
crystal size
crystal orientation and molecular packing. Grazing incidence small-angle X-ray scattering (GISAXS)
small angle neutron scattering (SANS)
and resonant soft X-ray scattering (RSoXS) are complementary m
ethods for characterizing the multiscale phase separation structures
and providing the information of phase separation size
aggregates size
interfacial molecular orientation and roughness. Meanwhile
in situ
GIWAXS and GISAXS techniques can be used to characterize the morphology evolution process from the precursor solution to thin film
which is of great significance to understand the formation mechanism of non-equilibrium morphology and realize controllable regulation of morphology. Here
we systematically summarize the most important characterization techniques
such as GIWAXS
GISAXS
SANS
RSoXS
and
in situ
GIWAXS/GISAXS
from two aspects: basic principle and application. In the application section
we take some classical cases to show how to characterize morphology and how to analyze data in a rational way. This summary is convenient for chemists and material scientists to quickly understand the principles and functions of various morphology characterization techniques
and provide instructions on how to choose proper method to study thin film morphology.
2
薄膜光伏散射技术微纳结构结晶特性相分离结构
Thin film photovoltaicScattering techniqueMicro-nano structureCrystallization characteristicsPhase separation structure
Zhu L, Zhang M, Xu J Q, Li C, Yan J, Zhou G Q, Zhong W K, Hao T Y, Song J L, Xue X N, Zhou Z C, Zeng R, Zhu H M, Chen C-C, MacKenzie R C I, Zou Y C, Nelson J, Zhang Y M, Sun Y M, Liu F. Nat Mater, 2022, https://doi.org/10.1038/s41563-022-01244-yhttps://doi.org/10.1038/s41563-022-01244-y
Chen D, Liu F, Wang C, Nakahara A, Russell T P. Nano Lett, 2011, 11(5): 2071-2078. doi:10.1021/nl200552rhttp://dx.doi.org/10.1021/nl200552r
Chen D, Nakahara A, Wei D G, Nordlund D, Russell T P. Nano Lett, 2011, 11(2): 561-567. doi:10.1021/nl103482nhttp://dx.doi.org/10.1021/nl103482n
Huang Y, Guo X, Liu F, Huo L J, Chen Y N, Russell T P, Han C C, Li Y F, Hou J H. Adv Mater, 2012, 24(25): 3383-3389. doi:10.1002/adma.201200995http://dx.doi.org/10.1002/adma.201200995
Zhu L, Zhong W K, Qiu C Q, Lyu B, Zhou Z C, Zhang M, Song J N, Xu J Q, Wang J, Ali J, Feng W, Shi Z W, Gu X D, Ying L, Zhang Y M, Liu F. Adv Mater, 2019, 31(41): 1902899-1902906. doi:10.1002/adma.201902899http://dx.doi.org/10.1002/adma.201902899
Ye L, Xiong Y, Zhang Q Q, Li S S, Wang C, Jiang Z, Hou J H, You W, Ade H. Adv Mater, 2018, 30(8): 1705485-1705493. doi:10.1002/adma.201705485http://dx.doi.org/10.1002/adma.201705485
Gao K, Miao J S, Xiao L G, Deng W Y, Kan Y Y, Liang T X, Wang C, Huang F, Peng J B, Cao Y, Liu F, Russell T P, Wu H B, Peng X B. Adv Mater, 2016, 28(23): 4727-4733. doi:10.1002/adma.201505645http://dx.doi.org/10.1002/adma.201505645
Ma W, Yang C, Gong X, Lee K, Heeger A J. Adv Funct Mater, 2005, 15(10): 1617-1622. doi:10.1002/adfm.200500211http://dx.doi.org/10.1002/adfm.200500211
Liu T, Guo Y, Yi Y P, Huo L J, Xue X N, Sun X B, Fu H T, Xiong W T, Meng D, Wang Z H, Liu F, Russell T P, Sun Y M. Adv Mater, 2016, 28(45): 10008-10015. doi:10.1002/adma.201602570http://dx.doi.org/10.1002/adma.201602570
Hao T Y, Leng S F, Yang Y K, Zhong W K, Zhang M, Zhu L, Song J N, Xu J Q, Zhou G Q, Zou Y C, Zhang Y M, Liu F. Patterns, 2021, 2(9): 100333-100343. doi:10.1016/j.patter.2021.100333http://dx.doi.org/10.1016/j.patter.2021.100333
Cui Chaohua(崔超华). Acta Polymerica Sinica(高分子学报), 2021, 52(6): 663-678. doi:10.11777/j.issn1000-3304.2021.21068http://dx.doi.org/10.11777/j.issn1000-3304.2021.21068
Wang N, Yu Y J, Zhao R Y, Zhang J D, Liu J, Wang L X. Chinese J Polym Sci, 2021, 39(11): 1449-1458. doi:10.1007/s10118-021-2609-9http://dx.doi.org/10.1007/s10118-021-2609-9
Zhang L, Ma W. Chinese J. Polym Sci, 2017, 35(2): 184-197. doi:10.1007/s10118-017-1898-5http://dx.doi.org/10.1007/s10118-017-1898-5
Chen W C, Xiao M J, Yang C P, Duan L R, Yang R Q. Chinese J Polym Sci, 2016, 35(2): 302-308. doi:10.1007/s10118-017-1892-yhttp://dx.doi.org/10.1007/s10118-017-1892-y
Xiong Wentao(熊文涛), Guo Yikun(郭亦堃), Zhao Dahui(赵达惠), Sun Yanming(孙艳明). Acta Polymerica Sinica(高分子学报), 2018, 2(2): 315-320. doi:10.11777/j.issn1000-3304.2018.17267http://dx.doi.org/10.11777/j.issn1000-3304.2018.17267
Kozub D R, Vakhshouri K, Orme L M, Wang C, Hexemer A, Gomez E D. Macromolecules, 2011, 44(14): 5722-5726. doi:10.1021/ma200855rhttp://dx.doi.org/10.1021/ma200855r
Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J. Nano Lett, 2005, 5(4): 579-583. doi:10.1021/nl048120ihttp://dx.doi.org/10.1021/nl048120i
Song J N, Zhang M, Yuan M, Qian Y H, Sun Y M, Liu F. Small Methods, 2018, 2(3): 1700229-1700246. doi:10.1002/smtd.201700229http://dx.doi.org/10.1002/smtd.201700229
Rivnay J, Mannsfeld S C B, Miller C E, Salleo A, Toney M F. Chem Rev, 2012, 112(10): 5488-5519. doi:10.1021/cr3001109http://dx.doi.org/10.1021/cr3001109
Salleo A, Kline R J, DeLongchamp D M, Chabinyc M L. Adv Mater, 2010, 22(34): 3812-3838. doi:10.1002/adma.200903712http://dx.doi.org/10.1002/adma.200903712
Liu F, Ferdous S, Schaible E, Hexemer A, Church M, Ding X D, Wang C, Russell T P. Adv Mater, 2015, 27(5): 886-891. doi:10.1002/adma.201404040http://dx.doi.org/10.1002/adma.201404040
Palumbiny C M, Liu F, Russell T P, Hexemer A, Wang C, Muller-Buschbaum P. Adv Mater, 2015, 27(22): 3391-3397. doi:10.1002/adma.201500315http://dx.doi.org/10.1002/adma.201500315
Xu J Q, Zhan J Z, Zhou G Q, Zhong W K, Zhang M, Xue X N, Zhu L, Leng S F, Chen J J, Zou Y C, Su X, Shi Z W, Zhu H M, Zhang M J, Chen C C, Li Y F, Zhang Y M, Liu F. Solar RRL, 2022, 6: 2100740-2100752. doi:10.1002/solr.202100740http://dx.doi.org/10.1002/solr.202100740
Zhang Ming(张明), Zhu Lei(朱磊), Qiu Chaoqun(邱超群), Zhang Yongming(张永明), Liu Feng(刘烽). Acta Polymerica Sinica(高分子学报), 2019, 50(4): 352-358. doi:10.11777/j.issn1000-3304.2019.19010http://dx.doi.org/10.11777/j.issn1000-3304.2019.19010
Zhang M, Zhu L, Zhou G Q, Hao T Y, Qiu C Q, Zhao Z, Hu Q, Larson B W, Zhu H M, Ma Z F, Tang Z, Feng W, Zhang Y M, Russell T P, Liu F. Nat Commun, 2021, 12: 309-318. doi:10.1038/s41467-020-20580-8http://dx.doi.org/10.1038/s41467-020-20580-8
Zhan J Z, Wang L, Zhang M, Zhu L, Hao T Y, Zhou G Q, Zhou Z C, Chen J J, Zhong W K, Qiu C Q, Leng S F, Zou Y C, Shi Z W, Zhu H M, Feng W, Zhang M J, Li Y F, Zhang Y M, Liu F. Macromolecules, 2021, 54(9): 4030-4041. doi:10.1021/acs.macromol.0c02872http://dx.doi.org/10.1021/acs.macromol.0c02872
Zhou G Q, Zhang M, Chen Z, Zhang J Y, Zhan L L, Li S X, Zhu L, Wang Z D, Zhu X Z, Chen H Z, Wang L J, Liu F, Zhu H M. ACS Energy Lett, 2021, 6(8): 2971-2981. doi:10.1021/acsenergylett.1c01154http://dx.doi.org/10.1021/acsenergylett.1c01154
Zhou G Q, Ding H, Zhu L, Qiu C Q, Zhang M, Hao T Y, Feng W, Zhang Y M, Zhu H M, Liu F. J Energy Chem, 2020, 47: 180-187. doi:10.1016/j.jechem.2019.12.007http://dx.doi.org/10.1016/j.jechem.2019.12.007
Zhu L, Zhang M, Zhou G Q, Hao T Y, Xu J Q, Wang J, Qiu C Q, Prine N, Ali J, Feng W, Gu X D, Ma Z F, Tang Z, Zhu H M, Ying L, Zhang Y M, Liu F. Adv Energy Mater, 2020, 10(18): 1904234-1904242. doi:10.1002/aenm.201904234http://dx.doi.org/10.1002/aenm.201904234
Zhang M, Zhu L, Hao T Y, Zhou G Q, Qiu C Q, Zhao Z, Hartmann N, Xiao B, Zou Y C, Feng W, Zhu H M, Zhang M, Zhang Y M, Li Y F, Russell T P, Liu F. Adv Mater, 2021, 33(18): 2007177-2007184. doi:10.1002/adma.202007177http://dx.doi.org/10.1002/adma.202007177
Xu J Q, Jo S B, Chen X K, Zhou G Q, Zhang M, Shi X L, Lin F, Zhu L, Hao T Y, Gao K, Zou Y C, Su X, Feng W, Jen A K J, Zhang Y M, Liu F. Adv Mater, 2022, 34(16): 2108317-2108329. doi:10.1002/adma.202108317http://dx.doi.org/10.1002/adma.202108317
Song J N, Zhou G Q, Chen W, Zhang Q Z, Ali J, Hu Q, Wang J, Wang C, Feng W, Djurisic A B, Zhu H M, Zhang Y M, Russell T P, Liu F. Adv Mater, 2020, 32(36): 2002784-2002793
Liang Y Y, Feng D Q, Guo J C, Szarko J M, Ray C, Chen L X, Yu L P. Macromolecules, 2009, 42(4): 1091-1098. doi:10.1021/ma8023969http://dx.doi.org/10.1021/ma8023969
Liu F, Chen D, Wang C, Luo K Y, Gu W Y, Briseno A L, Hsu J W P, Russell T P. ACS Appl Mater Interfaces, 2014, 6(22): 19876-19887. doi:10.1021/am505283khttp://dx.doi.org/10.1021/am505283k
Chiu M Y, Jeng U S, Su C H, Liang K S, Wei K H. Adv Mater, 2008, 20(13): 2573-2578. doi:10.1002/adma.200703097http://dx.doi.org/10.1002/adma.200703097
Russell T P, Stein R S. J Polym Sci: Polym Phys Edition, 1982, 20(9): 1593-1607. doi:10.1002/pol.1982.180200908http://dx.doi.org/10.1002/pol.1982.180200908
Yin W, Dadmun M. ACS Nano, 2011, 5(6): 4756-4768. doi:10.1021/nn200744qhttp://dx.doi.org/10.1021/nn200744q
Liao H C, Tsao C S, Lin T H, Chuang C M, Chen C Y, Jeng U S, Su C H, Chen Y F, Su W F. J Am Chem Soc, 2011, 133(33): 13064-13073. doi:10.1021/ja202977rhttp://dx.doi.org/10.1021/ja202977r
Liu F, Brady M A, Wang C. Europ Polym J, 2016, 81: 555-568. doi:10.1016/j.eurpolymj.2016.04.014http://dx.doi.org/10.1016/j.eurpolymj.2016.04.014
Wang C, Lee D H, Hexemer A, Kim M I, Zhao W, Hasegawa H, Ade H, Russell T P. Nano Lett, 2011, 11(9): 3906-3911. doi:10.1021/nl2020526http://dx.doi.org/10.1021/nl2020526
Liu F, Zhao W, Tumbleston J R, Wang C, Gu Y, Wang D, Briseno A L, Ade H, Russell T P. Adv Energy Mater, 2014, 4(5): 1301377-1301385. doi:10.1002/aenm.201301377http://dx.doi.org/10.1002/aenm.201301377
Gao K, Deng W Y, Xiao L G, Hu Q, Kan Y Y, Chen X B, Wang C, Huang F, Peng J B, Wu H B, Peng X B, Cao Y, Russell T P, Liu F. Nano Energy, 2016, 30: 639-648. doi:10.1016/j.nanoen.2016.10.031http://dx.doi.org/10.1016/j.nanoen.2016.10.031
Gao K, Li L S, Lai T Q, Xiao L G, Huang Y, Huang F, Peng J B, Cao Y, Liu F, Russell T P, Janssen R A J, Peng X B. J Am Chem Soc, 2015, 137(23): 7282-7285. doi:10.1021/jacs.5b03740http://dx.doi.org/10.1021/jacs.5b03740
McNeill C R, Watts B, Thomsen L, Belcher W J, Greenham N C, Dastoor P C, Ade H. Macromolecules, 2009, 42(9): 3347-3352. doi:10.1021/ma801816rhttp://dx.doi.org/10.1021/ma801816r
Song J N, Hu Q, Zhang M, Zhang Q Z, Zhu L, Ali J, Wang C, Feng W, Russell T P, Liu F. J Mater Chem C, 2020, 8:11695-11703. doi:10.1039/d0tc02030chttp://dx.doi.org/10.1039/d0tc02030c
Hu Q, Zhao L C, Wu J, Gao K, Luo D Y, Jiang Y F, Zhang Z Y, Zhu C H, Schaible E, Hexemer A, Wang C, Liu Y, Zhang W, Gratzel M, Liu F, Russell T P, Zhu R, Gong Q H. Nat Commun, 2017, 8: 15688-15696. doi:10.1038/ncomms15688http://dx.doi.org/10.1038/ncomms15688
Song J N, Hu Q, Zhang Q Z, Xiong S B, Zhao Z, Ali J, Zou Y C, Feng W, Yang Z B, Bao Q Y, Zhang Y M, Russell T P, Liu F. Adv Funct Mater, 2021, 31(14): 2009103-2009111. doi:10.1002/adfm.202009103http://dx.doi.org/10.1002/adfm.202009103
0
Views
967
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution