浏览全部资源
扫码关注微信
1.高分子材料工程国家重点实验室 四川大学高分子科学与工程学院 成都 610065
2.金发科技股份有限公司 广州 511458
Yan-hua Niu, E-mail: yhniu@scu.edu.cn
Guang-xian Li, E-mail: guanxianli@scu.edu.cn
Published:20 December 2022,
Published Online:30 August 2022,
Received:15 April 2022,
Accepted:06 May 2022
移动端阅览
郭少华,罗国君,牛艳华等.高强超韧聚对苯二甲酸丁二醇酯/共聚酯合金的制备[J].高分子学报,2022,53(12):1504-1513.
Guo Shao-hua,Luo Guo-jun,Niu Yan-hua,et al.Preparation of High Strength and Super Toughness PBT/Copolyester Alloy[J].ACTA POLYMERICA SINICA,2022,53(12):1504-1513.
郭少华,罗国君,牛艳华等.高强超韧聚对苯二甲酸丁二醇酯/共聚酯合金的制备[J].高分子学报,2022,53(12):1504-1513. DOI: 10.11777/j.issn1000-3304.2022.22124.
Guo Shao-hua,Luo Guo-jun,Niu Yan-hua,et al.Preparation of High Strength and Super Toughness PBT/Copolyester Alloy[J].ACTA POLYMERICA SINICA,2022,53(12):1504-1513. DOI: 10.11777/j.issn1000-3304.2022.22124.
采用熔融共混法制备了高强超韧聚对苯二甲酸丁二醇酯(PBT)/聚(对苯二甲酸乙二醇酯-
co
-对苯二甲酸-1
4-环己二醇酯)(PCTG)/甲基丙烯酸缩水甘油酯接枝POE(POE-
g
-GMA)共混物,并对其增韧机理进行了系统分析,同时利用高速相机记录了不同韧性材料的冲击行为. 扫描电子显微镜(SEM)照片显示POE-
g
-GMA均匀分散在体系中,粒径约为0.3 μm. PCTG和PBT具有很好的相容性,并能抑制PBT的结晶;随着PCTG含量的增加(0 wt%~40 wt%),共混物玻璃化转变温度(
T
g
)呈线性增加,结晶度逐渐降低,但韧性增加不大. 当PCTG含量为50 wt%时,材料发生脆韧转变,缺口冲击强度达到1060 J/m,断裂伸长率达到360%,分别较未添加PCTG的样品(PBT-3E)提高了17和20倍,且拉伸强度未有明显下降(45 MPa,下降了18%). 冲击断面的微观形貌表明,在该含量下,材料发生了大量的空洞化和屈服形变. 进一步分析表明,体系中更多的可移动无定形组分(MAF),更低的
T
g
和结晶度是材料发生脆韧转变的主要原因,而冲击瞬间产生的自发热,也进一步促进了材料屈服形变. 最后通过仪器化冲击仪和高速相机记录了材料在脆性断裂和韧性断裂2种模式下形变随时间的关系,为进一步理解材料冲击行为提供了实验依据.
High-strength and super-toughened poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate-
co
-terephthalate-1
4-cyclohexanediol ester) (PCTG)/glycidyl methacrylate grafted POE (POE-
g
-GMA) blends were prepared by melt blending
and their toughening mechanisms were systematically analyzed. The impact behaviors of the materials with different toughness were recorded using a high-speed camera. Scanning electron microscopy (SEM) photographs showed that POE-
g
-GMA was uniformly dispersed in the blend with a particle size of about 0.3 μm. PCTG possesses good compatibility with PBT
and could inhibit the crystallization of PBT. With the increase of PCTG content (0 wt%-40 wt%)
the glass transition temperature (
T
g
) of the blends increased linearly and the crystallinity decreased gradually
but the toughness increases slightly. As the content of PCTG reaches 50 wt%
the brittle-ductile transition occurs
with the notch impact strength 1060 J/m and the elongation at break 360%
which is 17 and 20 times of PBT
respectively
but the tensile strength does not decrease significantly (45 MPa
decreased by 18%). The microscopic morphology of the impact fracture section shows that a large amount of cavitation and yield deformation occurred in the material at this content. Further analysis shows that more mobile amorphous fraction (MAF)
lower
T
g
and crystallinity are the main reasons for the brittle-ductile transformation
of the material
and the heat generation at the moment of impact further contributes to the yield deformation. Finally
the deformation of the material with time in both brittle fracture and ductile fracture modes was recorded by an instrumented impact tester and high-speed camera to provide an experimental basis for further understanding of the impact behavior.
2
聚对苯二甲酸丁二醇酯共聚酯高强超韧自发热冲击行为
Poly(butylene terephthalate)CopolyesterHigh strong and super toughenessSelf-heatingImpact behavior
Yang H, Cho K. J Appl Polym Sci, 2010, 116(4): 1948-1957
Larocca N M, HageJr. E, Pessan L A. Polymer, 2004, 45(15): 5265-5277. doi:10.1016/j.polymer.2004.05.056http://dx.doi.org/10.1016/j.polymer.2004.05.056
Sun S L, Xu X Y, Yang H D, Zhang H X. Polymer, 2005(18), 46: 7632-7643. doi:10.1016/j.polymer.2005.06.011http://dx.doi.org/10.1016/j.polymer.2005.06.011
Aróstegui A, Nazábal J. Polym Eng Sci, 2003, 46(10): 1691-1701. doi:10.1002/pen.10143http://dx.doi.org/10.1002/pen.10143
Wang X H, Zhang H X, Wang Z G, Jiang B Z. Polymer, 1997, 38(7): 1569-1572. doi:10.1016/s0032-3861(96)00674-xhttp://dx.doi.org/10.1016/s0032-3861(96)00674-x
Archondouli P S, Kalfoglou N K. Polymer, 2001, 42(8): 3489-3502. doi:10.1016/s0032-3861(00)00758-8http://dx.doi.org/10.1016/s0032-3861(00)00758-8
Savadekar N R, Jadhav K, Mali M, Mhaske S T. Int J Plast Technol, 2015, 18: 157-172. doi:10.1007/s12588-014-9087-7http://dx.doi.org/10.1007/s12588-014-9087-7
Lei Ming(雷鸣), Zou Junfeng(邹军锋), Yu Zhongzhen(于中振), Ouyang Chun(欧阳春), Yang Guisheng(杨桂生). Acta Polymerica Sinica(高分子学报), 2000, (5): 608-611. doi:10.3321/j.issn:1000-3304.2000.05.019http://dx.doi.org/10.3321/j.issn:1000-3304.2000.05.019
Wei Gang(魏刚,), Yu Yan(余燕), Huang Rui(黄锐). Acta Polymerica Sinica(高分子学报), 2006, (9): 1062-1068. doi:10.3321/j.issn:1000-3304.2006.09.006http://dx.doi.org/10.3321/j.issn:1000-3304.2006.09.006
Shang M Y, Cheng H L, Shentu B Q, Weng Z X. J Appl Polym Sci, 2019, 137(28): 48872-48885. doi:10.1002/app.48872http://dx.doi.org/10.1002/app.48872
Wu Zhenggui(吴正贵), Dong Xinyi(董新一), Dong Weifu(东为富). Acta Polymerica Sinica(高分子学报), 2021, 52(7): 734-740. doi:10.11777/j.issn1000-3304.2020.20274http://dx.doi.org/10.11777/j.issn1000-3304.2020.20274
Dong Lijie(董丽杰), Zhang Huixuan(张会轩), Yang Haidong(杨海东), Xiong Chuanxi(熊传溪). Acta Polymerica Sinica(高分子学报), 2003, (2): 167-170. doi:10.3321/j.issn:1000-3304.2003.02.002http://dx.doi.org/10.3321/j.issn:1000-3304.2003.02.002
Yan J Q, Maiti S S, Spontak R J. ACS Sustain Chem Eng, 2019, 7(12): 10830-10839
Kumar S, Satapathy B K. Mater Des, 2014, 62: 382-391. doi:10.1016/j.matdes.2014.05.043http://dx.doi.org/10.1016/j.matdes.2014.05.043
Fu Y, Song H H, Zhou C, Sun S L, Zhang H X. Polym Compos, 2013, 34(1): 15-21. doi:10.1002/pc.22372http://dx.doi.org/10.1002/pc.22372
Li J L, Wang X F, Yang C J, Yang J H, Wang Y, Zhang J H. Compos Part A-Appl S, 2016, 90: 200-210. doi:10.1016/j.compositesa.2016.07.006http://dx.doi.org/10.1016/j.compositesa.2016.07.006
Lin G P, Lin L, Wang X L, Chen L, Wang Y Z. Ind Eng Chem Res, 2015, 54(4): 1282-1291. doi:10.1021/ie504032whttp://dx.doi.org/10.1021/ie504032w
Lei C H, Chen D H. J Appl Polym Sci, 2008, 109(2): 1099-1104. doi:10.1002/app.28060http://dx.doi.org/10.1002/app.28060
Hamilton D G, Gallucci R R. J Appl Polym Sci, 1993, 48(12): 2249-2252. doi:10.1002/app.1993.070481218http://dx.doi.org/10.1002/app.1993.070481218
Wu J S, Mai Y W. J Mater Sci, 1993, 28(22): 6167-6177. doi:10.1007/bf00365039http://dx.doi.org/10.1007/bf00365039
Bai H Y, Liu X Y, Zhang Y, Zhang Y X. e-Polymers, 2010, 10(1): 105-120
Chen T T, Zhang J. Appl Surf Sci, 2018, 437: 62-69. doi:10.1016/j.apsusc.2017.12.168http://dx.doi.org/10.1016/j.apsusc.2017.12.168
Chen T T, Jiang G D, Zhang J. Cryst Res Technol, 2014, 49(4): 232-243. doi:10.1002/crat.201300369http://dx.doi.org/10.1002/crat.201300369
Chiu F C, Huang K H, Yang J C. J Polym Sci Polym Phys, 2003, 41(19): 2264-2274. doi:10.1002/polb.10590http://dx.doi.org/10.1002/polb.10590
Yu Z Z, Lei M, Ou Y C, Yang G S. J Appl Polym Sci, 2003, 89(3): 797-805. doi:10.1002/app.12300http://dx.doi.org/10.1002/app.12300
Dupaixa R B, Boyce M C. Polymer, 2005, 46(13): 4827-4838. doi:10.1016/j.polymer.2005.03.083http://dx.doi.org/10.1016/j.polymer.2005.03.083
Saheb D N, Jog J P. J Polym Sci Polym Phys, 1999, 37(17): 2439-2444. doi:10.1002/(sici)1099-0488(19990901)37:17<2439::aid-polb15>3.0.co;2-bhttp://dx.doi.org/10.1002/(sici)1099-0488(19990901)37:17<2439::aid-polb15>3.0.co;2-b
Shang M Y, Wu Y J, Shentu B Q, Weng Z X. Ind Eng Chem Res, 2019, 58(28): 12650-12663. doi:10.1021/acs.iecr.9b00691http://dx.doi.org/10.1021/acs.iecr.9b00691
Yin L G, Shi D, Liu Y L, Yin J H. Polym Int, 2009, 58(8): 919-926. doi:10.1002/pi.2613http://dx.doi.org/10.1002/pi.2613
Laird C, Smith G C. Phil Mag, 1962, 7(77): 847-857. doi:10.1080/14786436208212674http://dx.doi.org/10.1080/14786436208212674
Grellmann W, Langer B. Deformation and Fracture Behaviour of Polymer Materials. Cham: Springer, 2017. doi:10.1007/978-3-319-41879-7http://dx.doi.org/10.1007/978-3-319-41879-7
Bucknall C B, Paul D R. Polymer, 2013, 54(1): 320-329. doi:10.1016/j.polymer.2012.11.019http://dx.doi.org/10.1016/j.polymer.2012.11.019
Bucknall C B, Paul D R. Polymer, 2009, 50(23): 5539-5548. doi:10.1016/j.polymer.2009.09.059http://dx.doi.org/10.1016/j.polymer.2009.09.059
Loyens W, Groeninckx G. Polymer, 2003, 44(1): 123-136. doi:10.1016/s0032-3861(02)00743-7http://dx.doi.org/10.1016/s0032-3861(02)00743-7
Yu Z Z, Yan C, Dasari A, Dai S, Mai Y W, Yang M S. Macromol Mater Eng, 2004, 289(8): 763-770. doi:10.1002/mame.200400041http://dx.doi.org/10.1002/mame.200400041
Esposito A, Delpouve N, Causin V, Dhotel A, Delbreilh L, Dargent E. Macromolecules, 2016, 49(13): 4850-4861. doi:10.1021/acs.macromol.6b00384http://dx.doi.org/10.1021/acs.macromol.6b00384
Ma Q, Georgiev G, Cebe P. Polymer, 2011, 52(20): 4562-4570. doi:10.1016/j.polymer.2011.08.006http://dx.doi.org/10.1016/j.polymer.2011.08.006
Kolesov I, Androsch R. Polymer, 2012, 53(21): 4770-4777. doi:10.1016/j.polymer.2012.08.017http://dx.doi.org/10.1016/j.polymer.2012.08.017
Bartolotta A, Marco G D, Farsaci F, Lanza M, Pieruccini M. Polymer, 2003, 44(19): 5771-5777. doi:10.1016/s0032-3861(03)00589-5http://dx.doi.org/10.1016/s0032-3861(03)00589-5
Cheng S Z D, Pan R, Wunderlich B. Die Makromol Chem, 1988, 189(10): 2443-2458. doi:10.1002/macp.1988.021891022http://dx.doi.org/10.1002/macp.1988.021891022
Yamauchi T. J Appl Polym Sci, 2006, 100(4): 2895-2900. doi:10.1002/app.23784http://dx.doi.org/10.1002/app.23784
Wang M, Liao Y, Chen D J. Polym Test, 2010, 29(6): 674-678. doi:10.1016/j.polymertesting.2010.05.004http://dx.doi.org/10.1016/j.polymertesting.2010.05.004
Chen Y K, Wang W T, Yuan D S, Xu C H, Cao L M, Liang X Q. ACS Sustain Chem Eng, 2018, 6(5): 6488-6496. doi:10.1021/acssuschemeng.8b00267http://dx.doi.org/10.1021/acssuschemeng.8b00267
Hristov V N, Lach R, Grellmann W. Polym Test, 2004, 23(5): 581-589. doi:10.1016/j.polymertesting.2003.10.011http://dx.doi.org/10.1016/j.polymertesting.2003.10.011
0
Views
144
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution