浏览全部资源
扫码关注微信
1.浙江大学化学系 杭州 310027
2.浙江大学杭州国际科创中心 杭州 311200
3.上海交通大学化学化工学院 上海 200240
Published:20 November 2022,
Published Online:29 August 2022,
Received:19 April 2022,
Accepted:24 May 2022
移动端阅览
王泽钜,绳新如,李光锋等.编织聚合物[J].高分子学报,2022,53(11):1301-1315.
Wang Ze-ju,Sheng Xin-ru,Li Guang-feng,et al.Woven Polymers[J].ACTA POLYMERICA SINICA,2022,53(11):1301-1315.
王泽钜,绳新如,李光锋等.编织聚合物[J].高分子学报,2022,53(11):1301-1315. DOI: 10.11777/j.issn1000-3304.2022.22130.
Wang Ze-ju,Sheng Xin-ru,Li Guang-feng,et al.Woven Polymers[J].ACTA POLYMERICA SINICA,2022,53(11):1301-1315. DOI: 10.11777/j.issn1000-3304.2022.22130.
编织聚合物是高分子科学与传统编织相结合的产物. 同普通聚合物材料相比,编织的经纬线程赋予了编织聚合物材料独特的网络拓扑以及丰富的力学性能. 但是,编织聚合物作为一类新兴的高分子材料,其在结构调控、性能探究以及应用拓展方面仍需进一步发展. 因此,本文从分子结出发,详细介绍了小分子打结的发展对于构建编织聚合物的推动作用;随后,总结了现有晶态编织聚合物以及柔性编织聚合物的构筑方法、性能研究以及相关的应用尝试;最后,指出了编织聚合物在当前发展阶段所面临的关键问题与挑战. 以期通过本文的概述,为推动编织聚合物领域的快速发展提供参考,也为新型功能高分子材料的研发提供新思路.
From the earliest knots to
various contemporary fabrics with exquisite patterns
weaving has been throughout the entire history of human civilization. The highly ordered warp and weft threads synergistically endow the woven materials with unique topologies and rich mechanical properties. Inspired by this
researchers attempt to integrate the woven topologies into polymer science
and develop new polymeric materials with well-defined structures—woven polymers. Woven polymers are a kind of polymer networks constructed by cross-nodes as the basic units and cross-linking with each other
which are mainly divided into two categories: one is crystalline woven polymers
which possess long-range ordered molecular woven threads
mainly including metal organic frameworks (MOFs) and covalent organic frameworks (COFs)
etc
.; the other type is flexible woven polymers
which are generally unordered over long ranges
while the incorporation of woven crosslinks can significantly enhance the physical and chemical properties of the polymers
similar to what the macroscopic woven structures do. In the woven polymer networks
the dynamically woven cross-links can effectively dissociate to dissipate energy under external stimuli
giving the entire polymer networks excellent dynamicity and toughness. Meanwhile
the warp and weft threads can slip relatively after the dissociation of the dynamic site
so that the stress could be transmitted to the entire polymer network
and the strength and resilience of the network are improved while the stability of the weaving topology is maintained. Therefore
the woven polymers have broad application prospects in the construction of mechanically stable crystalline framework materials and new flexible functional polymer materials. However
as an emerging polymer material system
woven polymers still need further development in terms of structure optimization
performance exploration and application expansion. This review first focuses on the molecule knots
introducing various construction strategies in deta
il and expounding their vital roles in the development of woven polymers. Then
we summarize the construction methods
performance tests and related attempts on application of existing crystalline woven polymers and flexible woven polymers. Finally
the key scientific issues and challenges in the field of woven polymers are discussed and the future application prospects are prospected. It is firmly believed that woven polymers are a very bright field of research
possessing new and interesting aspects waiting to be explored and discovered. It is anticipated that this review will provide references and clear veins for the rapid development of woven polymers
and new approaches for the research of new functional polymer materials.
编织聚合物,分子结,编织框架材料,机械适应性,拓扑网络
Woven polymersMolecular knotsWoven framework materialsMechanical adaptabilityTopology network
Liu Y L, Yu Y, Gao J, Wang Z Q, Zhang X. Angew Chem Int Ed, 2010, 49(37): 6576-6579. doi:10.1002/anie.201002415http://dx.doi.org/10.1002/anie.201002415
Wang Feng(汪峰), Dong Shengyi(董盛谊), Zheng Bo(郑波), Huang Feihe(黄飞鹤). Acta Polymerica Sinica(高分子学报), 2011, (9): 956-964. doi:10.3724/sp.j.1105.2011.10377http://dx.doi.org/10.3724/sp.j.1105.2011.10377
Yang H, Ma Z, Wang Z Q, Zhang X. Polym Chem, 2014, 5(4): 1471-1476. doi:10.1039/c3py01237ahttp://dx.doi.org/10.1039/c3py01237a
Tan X X, Yang L L, Huang Z H, Yu Y, Wang Z Q, Zhang X. Polym Chem, 2015, 6(5): 681-685. doi:10.1039/c4py01440ehttp://dx.doi.org/10.1039/c4py01440e
Liu X G, Xu J F, Wang Z Q, Zhang X. Polym Chem, 2016, 7(13): 2333-2336. doi:10.1039/c6py00071ahttp://dx.doi.org/10.1039/c6py00071a
Qin B, Zhang S, Song Q, Huang Z H, Xu J F, Zhang X. Angew Chem Int Ed, 2017, 56(26): 7639-7643. doi:10.1002/anie.201703572http://dx.doi.org/10.1002/anie.201703572
Yan X Z, Zhou M, Chen J Z, Chi X D, Dong S Y, Zhang M M, Ding X, Yu Y H, Shao S, Huang F H. Chem Comm, 2011, 47(25): 7086-7088. doi:10.1039/c1cc11790dhttp://dx.doi.org/10.1039/c1cc11790d
Yan X Z, Wang F, Zheng B, Huang F H. Chem Soc Rev, 2012, 41(18): 6042-6045. doi:10.1039/c2cs35091bhttp://dx.doi.org/10.1039/c2cs35091b
Yan X Z, Xu D H, Chi X D, Chen J Z, Dong S Y, Ding X, Yu Y H, Huang F H. Adv Mater, 2012, 24(3): 362-369. doi:10.1002/adma.201103220http://dx.doi.org/10.1002/adma.201103220
Yan X Z, Jiang B, Cook T R, Zhang Y Y, Li J Y, Yu Y H, Huang F H, Yang H B, Stang P J. J Am Chem Soc, 2013, 135(45): 16813-116816. doi:10.1021/ja4092193http://dx.doi.org/10.1021/ja4092193
Yan X Z, Li S J, Pollock J B, Cook T R, Chen J Z, Zhang Y Y, Ji X F, Yu Y H, Huang F H, Stang P J. PNAS USA, 2013, 110(39): 15585-15590. doi:10.1073/pnas.1307472110http://dx.doi.org/10.1073/pnas.1307472110
Yan X Z, Cook T R, Pollock J B, Wei P F, Zhang Y Y, Yu Y H, Huang F H, Stang P J. J Am Chem Soc, 2014, 136(12): 4460-4463. doi:10.1021/ja412249khttp://dx.doi.org/10.1021/ja412249k
Ji Xiaofan(吉晓帆), Xia Danyu(夏丹玉), Yan Xuzhou(颜徐州), Wang Hu(王虎), Huang Feihe(黄飞鹤). Acta Polymerica Sinica(高分子学报), 2017, (1): 9-18. doi:10.11777/j.issn1000-3304.2017.16167http://dx.doi.org/10.11777/j.issn1000-3304.2017.16167
Xu Jiangfei(徐江飞), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2017, (1): 37-49. doi:10.11777/j.issn1000-3304.2017.16262http://dx.doi.org/10.11777/j.issn1000-3304.2017.16262
Zhang Xi(张希), Wang Liyan(王力彦), Xu Jiangfei(徐江飞), Chen Daoyong(陈道勇), Shi Linqi(史林启), Zhou Yongfeng(周永丰), Shen Zhihao(沈志豪). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 973-987. doi:10.11777/j.issn1000-3304.2019.19no6http://dx.doi.org/10.11777/j.issn1000-3304.2019.19no6
Zhang Zhaoming(张照明), Zhao Jun(赵骏), Yan Xuzhou(颜徐州). Acta Polymerica Sinica(高分子学报), 2022, 53(7): 691-706. doi:10.11777/j.issn1000-3304.2022.22049http://dx.doi.org/10.11777/j.issn1000-3304.2022.22049
Zou Z A, Zhu C P, Li Y, Lei X F, Zhang W, Xiao J L. Sci Adv, 2018, 4(2): eaaq0508. doi:10.1126/sciadv.aaq0508http://dx.doi.org/10.1126/sciadv.aaq0508
Kang J, Son D, Wang G N, Liu Y, Lopez J, Kim Y, Oh J Y, Katsumata T, Mun J, Lee Y, Jin L, Tok J B, Bao Z N. Adv Mater, 2018, 30(13): 1704846-1704853. doi:10.1002/adma.201706846http://dx.doi.org/10.1002/adma.201706846
Pan X F, Wang Q H, He P, Liu K, Ni Y H, Chen L H, Ouyang X H, Huang L L, Wang H P, Xu S Y. Chem Eng J, 2020, 379: 122271-122279. doi:10.1016/j.cej.2019.122271http://dx.doi.org/10.1016/j.cej.2019.122271
Zhao L J, Wang L L, Zheng Y Q, Zhao S F, Wei W, Zhang D W, Fu X Y, Jiang K, Shen G Z, Han W. Nano Energy, 2021, 84: 105921-105931. doi:10.1016/j.nanoen.2021.105921http://dx.doi.org/10.1016/j.nanoen.2021.105921
Du G, Moulin E, Jouault N, Buhler E, Giuseppone N. Angew Chem Int Ed, 2012, 51(50): 12504-12508. doi:10.1002/anie.201206571http://dx.doi.org/10.1002/anie.201206571
Goujon A, Du G, Moulin E, Fuks G, Maaloum M, Buhler E, Giuseppone N. Angew Chem Int Ed, 2016, 55(2): 703-707. doi:10.1002/anie.201509813http://dx.doi.org/10.1002/anie.201509813
Zhang Z M, Cheng L, Zhao J, Zhang H, Zhao X Y, Liu Y H, Bai R X, Pan H, Yu W, Yan X Z. J Am Chem Soc, 2021, 143(2): 902-911. doi:10.1021/jacs.0c10918http://dx.doi.org/10.1021/jacs.0c10918
Duan J G, Jin W Q, Kitagawa S. Coord Chem Rev, 2017, 332: 48-74. doi:10.1016/j.ccr.2016.11.004http://dx.doi.org/10.1016/j.ccr.2016.11.004
Moon H R, Lim D W, Suh M P. Chem Soc Rev, 2013, 42(4): 1807-1824. doi:10.1039/c2cs35320bhttp://dx.doi.org/10.1039/c2cs35320b
Foo M L, Matsuda R, Kitagawa S. Chem Mater, 2013, 26(1): 310-322. doi:10.1021/cm402136zhttp://dx.doi.org/10.1021/cm402136z
Li G F, Wang L, Wu L, Guo Z W, Zhao J, Liu Y H, Bai R X, Yan X Z. J Am Chem Soc, 2020, 142(33): 14343-14349. doi:10.1021/jacs.0c06416http://dx.doi.org/10.1021/jacs.0c06416
August D P, Dryfe R A W, Haigh S J, Kent P R C, Leigh D A, Lemonnier J F, Li Z, Muryn C A, Palmer L I, Song Y, Whitehead G F S, Young R J. Nature, 2020, 588(7838): 429-435. doi:10.1038/s41586-020-3019-9http://dx.doi.org/10.1038/s41586-020-3019-9
Busch D H. J Inclusion Phenom Mol Recognit Chem, 1992, 12(1-4): 389-395. doi:10.1007/bf01053876http://dx.doi.org/10.1007/bf01053876
Hubin T J, Busch D H. Coord Chem Rev, 2000, 200-202: 5-52. doi:10.1016/s0010-8545(99)00242-8http://dx.doi.org/10.1016/s0010-8545(99)00242-8
Carlucci L, Ciani G, Proserpio D M. Coord Chem Rev, 2003, 246(1-2): 247-289. doi:10.1016/s0010-8545(03)00126-7http://dx.doi.org/10.1016/s0010-8545(03)00126-7
Zhang F, Nangreave J, Liu Y, Yan H. J Am Chem Soc, 2014, 136(32): 11198-11211. doi:10.1021/ja505101ahttp://dx.doi.org/10.1021/ja505101a
Guo Q H, Jiao Y, Feng Y N, Stoddart J F. CCS Chem, 2021, 3(7): 1542-1572. doi:10.31635/ccschem.021.202100975http://dx.doi.org/10.31635/ccschem.021.202100975
Dietrich-Buchecker C O, Sauvage J P, Kintzinger J P. Tetrahedron Lett, 1983, 24(46): 5095-5098. doi:10.1016/s0040-4039(00)94050-4http://dx.doi.org/10.1016/s0040-4039(00)94050-4
Dietrich-Buchecker C O, Sauvage J P. Angew Chem Int Ed, 1989, 28(2): 189-192. doi:10.1002/anie.198901891http://dx.doi.org/10.1002/anie.198901891
Dietrich-Buchecker C O, Guilhem J, Pascard C, Sauvage J P. Angew Chem Int Ed, 1990, 29(10): 1154-1156. doi:10.1002/anie.199011541http://dx.doi.org/10.1002/anie.199011541
Nierengarten J F, Dietrich-Buchecker C O, Sauvage J P. J Am Chem Soc, 1994, 116(1): 375-376. doi:10.1021/ja00080a045http://dx.doi.org/10.1021/ja00080a045
Ayme J F, Beves J E, Leigh D A, McBurney R T, Rissanen K, Schultz D. Nat Chem, 2012, 4(1): 15-20. doi:10.1038/nchem.1193http://dx.doi.org/10.1038/nchem.1193
Leigh D A, Pritchard R G, Stephens A J. Nat Chem, 2014, 6(11): 978-982. doi:10.1038/nchem.2056http://dx.doi.org/10.1038/nchem.2056
Danon J J, Kruger A, Leigh D A, Lemonnier J F, Stephens A J, Vitorica-Yrezabal I J, Woltering S L. Science, 2017, 355(6321): 159-162. doi:10.1126/science.aal1619http://dx.doi.org/10.1126/science.aal1619
Zhang L, August D P, Zhong J, Whitehead G F S, Vitorica-Yrezabal I J, Leigh D A. J Am Chem Soc, 2018, 140(15): 4982-4985. doi:10.1021/jacs.8b00738http://dx.doi.org/10.1021/jacs.8b00738
Beves J E, Campbell C J, Leigh D A, Pritchard R G. Angew Chem Int Ed, 2013, 52(25): 6464-6467. doi:10.1002/anie.201302634http://dx.doi.org/10.1002/anie.201302634
Ayme J F, Beves J E, Campbell C J, Leigh D A. Chem Soc Rev, 2013, 42(4): 1700-1712. doi:10.1039/c2cs35229jhttp://dx.doi.org/10.1039/c2cs35229j
Leigh D A, Danon J J, Fielden S D P, Lemonnier J F, Whitehead G F S, Woltering S L. Nat Chem, 2021, 13(2): 117-122. doi:10.1038/s41557-020-00594-xhttp://dx.doi.org/10.1038/s41557-020-00594-x
Zhang L, Stephens J A, Nussbaumer L A, Lemonnier J F, Jurček P, Vitorica-Yrezabal I J, Leigh D A. Nat Chem, 2018, 10(11): 1083-1088. doi:10.1038/s41557-018-0124-6http://dx.doi.org/10.1038/s41557-018-0124-6
Leigh D A, Schaufelberger F, Pirvu L, Stenlid J H, August D P, Segard J. Nature, 2020, 584(7822): 562-568. doi:10.1038/s41586-020-2614-0http://dx.doi.org/10.1038/s41586-020-2614-0
Ashbridge Z, Kreidt E, Pirvu L, Schaufelberger F, Stenlid J H, Abild-Pedersen F, Leigh D A. Science, 2022, 375(6584): 1035-1041. doi:10.1126/science.abm9247http://dx.doi.org/10.1126/science.abm9247
Rungtaweevoranit B, Diercks C S, Kalmutzki M J, Yaghi O M. Faraday Discuss, 2017, 201: 9-45. doi:10.1039/c7fd00160fhttp://dx.doi.org/10.1039/c7fd00160f
Yaghi O M. Mol Front J, 2019, 3(1): 66-83
Morris W, Volosskiy B, Demir S, Gandara F, Mcgrier P L, Furukawa H, Cascio D, Stoddart J F, Yaghi O M. Inorg Chem, 2012, 51(12): 6443-6445. doi:10.1021/ic300825shttp://dx.doi.org/10.1021/ic300825s
Furukawa H, Cordova K E, O´Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444-1230557. doi:10.1126/science.1230444http://dx.doi.org/10.1126/science.1230444
Schoedel A, Li M, Li D, O´Keeffe M, Yaghi O M. Chem Rev, 2016, 116(19): 12466-12535. doi:10.1021/acs.chemrev.6b00346http://dx.doi.org/10.1021/acs.chemrev.6b00346
EI-Kaderi H M, Hunt J R, Mendoza-Cortes J L, Cote A P, Taylor R E, O´Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268-272. doi:10.1126/science.1139915http://dx.doi.org/10.1126/science.1139915
Ding X S, Guo J, Feng X, Honson Y, Guo J D, Seki S, Maitarad P, Saeki A, Nagase S, Jiang D L. Angew Chem Int Ed, 2011, 50(6): 1289-1293. doi:10.1002/anie.201005919http://dx.doi.org/10.1002/anie.201005919
Dogru M, Sonnauer A, Gavryushin A, Knochel P, Bein T. Chem Commun, 2011, 47(6): 1707-1709. doi:10.1039/c0cc03792chttp://dx.doi.org/10.1039/c0cc03792c
Bunck D N, Dichtel W R. Angew Chem Int Ed, 2012, 51(8): 1885-1889. doi:10.1002/anie.201108462http://dx.doi.org/10.1002/anie.201108462
Zhang K D, Tian J, Hanifi D, Zhang Y B, Sue A C H, Zhou T Y, Zhang L, Zhao X, Liu Y, Li Z T. J Am Chem Soc, 2013, 135(47): 17913-17918. doi:10.1021/ja4086935http://dx.doi.org/10.1021/ja4086935
Vyas V S, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch B V. Nat Commun, 2015, 6: 8508-8516. doi:10.1038/ncomms9508http://dx.doi.org/10.1038/ncomms9508
Lin Q, Fan Y Q, Mao P P, Liu L, Liu J, Zhang Y M, Yao H, Wei T B. Chem, 2018, 24(4): 777-783. doi:10.1002/chem.201705107http://dx.doi.org/10.1002/chem.201705107
Deng J H, Luo J, Mao Y L, Lai S, Gong Y N, Zhong D C, Lu T B. Sci Adv, 2020, 6(2): eaax9976. doi:10.1126/sciadv.aax9976http://dx.doi.org/10.1126/sciadv.aax9976
Liu Y, Ma Y, Zhao Y, Sun X, Gándara F, Furukawa H, Liu Z, Zhu H, Zhu C, Suenaga K, Oleynikov P, Alshammari A S, Zhang X, Terasaki O, Yaghi O M. Science, 2016, 351(6271): 365-369. doi:10.1126/science.aad4011http://dx.doi.org/10.1126/science.aad4011
Liu Y, Ma Y, Yang J, Diercks C S, Tamura N, Jin F, Yaghi O M. J Am Chem Socs, 2018, 140(47): 16015-16019. doi:10.1021/jacs.8b08949http://dx.doi.org/10.1021/jacs.8b08949
Zhao Y, Guo L, Gándara F, Ma Y, Liu Z, Zhu C, Lyu H, Trickett C A, Kapustin E A, Terasaki O, Yaghi O M. J Am Chem Soc, 2017, 139(37): 13166-13172. doi:10.1021/jacs.7b07457http://dx.doi.org/10.1021/jacs.7b07457
Xu H S, Luo Y, Li X, See P Z, Chen Z, Ma T, Liang L, Leng K, Abdelwahab I, Wang L, Li R L, Shi X Y, Zhou Y, Lu X F, Zhao X X, Liu C B, Sun J L, Loh K P. Nat Commun, 2020, 11(1): 1434-1439. doi:10.1038/s41467-020-15281-1http://dx.doi.org/10.1038/s41467-020-15281-1
Xu H S, Luo Y, See P Z, Li X, Chen Z, Zhou Y, Zhao X, Leng K, Park I H, Li R, Liu C, Chen F, Xi S, Sun J L, Loh K P. Angew Chem Int Ed, 2020, 59(28): 11527-11532. doi:10.1002/anie.202002724http://dx.doi.org/10.1002/anie.202002724
Wang Z B, Blaszczyk A, Fuhr O, Heissler S, Wöll C, Mayor M. Nat Commun, 2017, 8(1): 14442-14449. doi:10.1038/ncomms14442http://dx.doi.org/10.1038/ncomms14442
Lin R B, He Y, Li P, Wang H, Zhou W, Chen B. Chem Soc Rev, 2019, 48(5): 1362-1389. doi:10.1039/c8cs00155chttp://dx.doi.org/10.1039/c8cs00155c
Fang Y, Ren G J, Li M L, Yang Y H, Guo D Y, Pan Q H. Sens Actuators B Chem, 2021, 349: 130726-130732. doi:10.1016/j.snb.2021.130726http://dx.doi.org/10.1016/j.snb.2021.130726
Huang Q Y, Li W L, Mao Z, Zhang H, Li Y, Ma D Y, Wu H Y, Zhao J, Yang Z Y, Zhang Y, Gong L, Aldred M P, Chi Z G. Chem, 2021, 7(5): 1321-1332. doi:10.1016/j.chempr.2021.02.017http://dx.doi.org/10.1016/j.chempr.2021.02.017
Wang Y P, Ma N, Wang Z Q, Zhang X. Angew Chem Int Ed, 2007, 46(16): 2823-2826. doi:10.1002/anie.200604982http://dx.doi.org/10.1002/anie.200604982
Lewandowska U, Zajaczkowski W, Chen L, Bouillière F, Wang D, Koynov K, Pisula W, Müllen K, Wennemers H. Angew Chem Int Ed, 2014, 53(46): 12537-12541. doi:10.1002/ange.201408279http://dx.doi.org/10.1002/ange.201408279
Lewandowska U, Zajaczkowski W, Corra S, Tanabe J, Borrmann R, Benetti E M, Stappert S, Watanabe K, Nellie A K O, Schaeublin R, Li C, Yashima E, Pisula W, Müllen K, Wennemers H. Nat Chem, 2017, 9(11): 1068-1072. doi:10.1038/nchem.2823http://dx.doi.org/10.1038/nchem.2823
Jie K C, Liu M, Zhou Y J, Little M A, Bonakala S, Chong S Y, Stephenson A, Chen L J, Huang F H, Cooper A I. J Am Chem Soc, 2017, 139(8): 2908-2911. doi:10.1021/jacs.6b13300http://dx.doi.org/10.1021/jacs.6b13300
Jie K C, Liu M, Zhou Y J, Little M A, Pulido A, Chong S Y, Stephenson A, Hughes A R, Sakakibara F, Ogoshi T, Blanc F, Day G M, Huang F H, Cooper A I. J Am Chem Soc, 2018, 140(22): 6921-6930. doi:10.1021/jacs.8b02621http://dx.doi.org/10.1021/jacs.8b02621
Jie K C, Zhou Y J, Li E R, Zhao R, Huang F H. Angew Chem Int Ed, 2018, 57(39): 12845-12849. doi:10.1002/anie.201808998http://dx.doi.org/10.1002/anie.201808998
0
Views
265
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution