浏览全部资源
扫码关注微信
1.南京工业大学,生物与制药工程学院 材料化学工程国家重点实验室,南京 211800
2.南京工业大学,材料科学与工程学院,南京 211800
Xin Hu, E-mail: xinhu@njtech.edu.cn
Ning Zhu, E-mail: ningzhu@njtech.edu.cn
Published:20 December 2022,
Published Online:09 September 2022,
Received:20 April 2022,
Accepted:27 May 2022
移动端阅览
陶永鑫,陈蕾蕾,刘一寰等.面向亚5 nm图案化含硅嵌段共聚物的合成与自组装[J].高分子学报,2022,53(12):1445-1458.
Tao Yong-xin,Chen Lei-lei,Liu Yi-huan,et al.Synthesis and Self-assembly of Silicon-containing Block Copolymers for Sub 5 nm Nanolithography[J].ACTA POLYMERICA SINICA,2022,53(12):1445-1458.
陶永鑫,陈蕾蕾,刘一寰等.面向亚5 nm图案化含硅嵌段共聚物的合成与自组装[J].高分子学报,2022,53(12):1445-1458. DOI: 10.11777/j.issn1000-3304.2022.22133.
Tao Yong-xin,Chen Lei-lei,Liu Yi-huan,et al.Synthesis and Self-assembly of Silicon-containing Block Copolymers for Sub 5 nm Nanolithography[J].ACTA POLYMERICA SINICA,2022,53(12):1445-1458. DOI: 10.11777/j.issn1000-3304.2022.22133.
嵌段共聚物的合成及其应用是高分子科学领域的研究热点. 近年来,国内外学者设计了一系列新型含硅嵌段共聚物,具有较高的Flory-Huggins相互作用参数,在自组装制备亚5 nm特征图案方面取得了重大突破,有望应用于下一代半导体制造. 本文总结了聚二甲基硅氧烷基、聚含硅苯乙烯基和聚倍半硅氧烷基3种类型含硅嵌段共聚物的合成,讨论了在本体和薄膜自组装纳米图案化方面的研究进展,对相关领域存在的挑战与机遇进行了展望.
Ever-shrinking pattern features present challenges for the semiconductor industry. Directed self-assembly (DSA) of block copolymers (BCP) has been demonstrated as one high throughput and low cost manufacturing candidate for the next-generation of nanolithography. The thermodynamically immiscible polymer blocks self-assemble into the ordered nanostructures with varied morphologies
and the feature size is dependent on the Flory-Huggins interaction parameter (
χ
) and the molecular weight (
N
) of BCP according to the se
lf-consistent mean field theory. Design
synthesis
and self-assembly of novel high
χ
low
N
BCP is the long-term target for the community of polymer chemistry and materials science with the aim to achieve small size microphase separation domains. This review focuses on self-assembly of silicon-containing block copolymers for sub 5 nm nanolithography. Silicon-containing block copolymers not only exhibit high
χ
but also improve etch contrast property
which are considered as the promising materials for nanolithography. After a brief introduction of DSA
the main body is divided into three sections according to the chemical structures
including poly(dimethylsioxane)-based BCP
poly(silicon containing styrene)-based BCP
and poly(hedraloligomeric silsesquioxane)-based BCP. Each section covers self-assembly of bulk polymer and/or thin film
from historic initial study (
>
5 nm) to the recent progress (
<
5 nm). Synthesis
characterizations
χ
assembly conditions
feature sizes are discussed in detail. Finally
the challenges and opportunities are proposed. We hope this review would provide insights into polymer science and nanolithography technology.
2
含硅嵌段共聚物自组装纳米光刻亚5 nmFlory-Huggins相互作用参数
Silicon-containing block copolymerSelf-assemblyNanolithographySub 5 nmFlory-Huggins interaction parameter
Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G. Macromolecules, 2014, 47(1): 2-12. doi:10.1021/ma401762nhttp://dx.doi.org/10.1021/ma401762n
Liu C C, Franke E, Mignot Y, Xie R, Yeung C W, Zhang J, Chi C, Zhang C, Farrell R, Lai K, Tsai H, Felix N, Corliss D. Nat Electron, 2018, 1(10): 562-569. doi:10.1038/s41928-018-0147-4http://dx.doi.org/10.1038/s41928-018-0147-4
Sanders D P. Chem Rev, 2010, 110(1): 321-360. doi:10.1021/cr900244nhttp://dx.doi.org/10.1021/cr900244n
Moore G . Electronics, 1965, 38(8): 114
Hu Xiaohua(胡晓华), Xiong Shisheng(熊诗圣). Chin J Appl Chem(应用化学), 2021, 38(9): 1029-1078. doi:10.19894/j.issn.1000-0518.210278http://dx.doi.org/10.19894/j.issn.1000-0518.210278
Cui Hao(崔昊), Wang Qianqian(王倩倩), Wang Xiaolin(王晓琳), He Xiangming(何向明), Xu Hong(徐宏). Chin J Appl Chem(应用化学), 2021, 38(9): 1154-1167
Gao Jiaxing(高佳兴), Chen Long(陈龙), Yu Jiating(玉佳婷), Guo Xudong(郭旭东), Hu Rui(胡睿), Wang Shuangqing(王双青), Chen Jinping(陈金瓶), Li Yi(李嫕), Yang Guoqiang(杨国强). Chin J Appl Chem(应用化学), 2021, 38(9): 1138-1153
Lu Xingyu(陆新宇), Ma Binze(马彬泽), Luo Hao(罗皓), Qi Huan(齐欢), Li Qiang(李强), Wu Guangpeng(伍广朋). Chin J Appl Chem(应用化学), 2021, 38(9): 1189-1198
Peng Xiaokang(朋小康), Huang Xingwen(黄兴文), Liu Rongtao(刘荣涛), Zhang Yongwen(张永文), Zhang Shiyang张诗洋, Liu Yidong(刘屹东), Min Yonggang(闽永刚). Chin J Appl Chem(应用化学), 2021, 38(9): 1079-1090
Tian Xin(田昕), Lai Hanwen(赖翰文), Liu Yadong(刘亚栋), Ji Shengxiang(季生象). Chin J Appl Chem(应用化学), 2021, 38(9): 1199-1208
Zhang Pingping(张萍萍), Yang Gaoling(杨高岭), Kang Guoguo(康果果), Shi Jianbing(石建兵), Zhong Haizheng(钟海政). Chin J Appl Chem(应用化学), 2021, 38(9): 1175-1188
Ji Shengxiang(季生象). Chin J Appl Chem(应用化学), 2021, 38(9): 1027-1028
Li Xiaoou(李小欧), Gu Xuesong(顾雪松), Li Yadong(刘亚栋), Ji Shengxiang(季生象). Chin J Appl Chem(应用化学), 2021, 38(9): 1105-1118. doi:10.1007/s40242-021-1398-6http://dx.doi.org/10.1007/s40242-021-1398-6
Guo Haiquan(郭海泉), Yang Zhenghua(杨正华), Gao Lianxun(高连勋). Chin J Appl Chem(应用化学), 2021, 38(9): 1119-1137
Gu Xuesong(顾雪松), Li Xiaoou(李小欧), Liu Yadong(刘亚栋), Ji Shengxiang(季生象). Chin J Appl Chem(应用化学), 2021, 38(9): 1091-1104. doi:10.19894/j.issn.1000-0518.210265http://dx.doi.org/10.19894/j.issn.1000-0518.210265
Kim H C, Park S M, Hinsberg W D. Chem Rev, 2010, 110(1): 146-177. doi:10.1021/cr900159vhttp://dx.doi.org/10.1021/cr900159v
Ji S, Wan L, Liu C C, Nealey P F. Prog Polym Sci, 2016, 54: 76-127. doi:10.1016/j.progpolymsci.2015.10.006http://dx.doi.org/10.1016/j.progpolymsci.2015.10.006
Chen Y, Xiong S. Int. J. Extreme Manuf, 2020, 2(3): 032006. doi:10.1088/2631-7990/aba3aehttp://dx.doi.org/10.1088/2631-7990/aba3ae
Wang Qianqian(王倩倩), Wu Liping(吴立萍), Wang Jing(王菁), Wang Liyuan(王立元). Progress in Chemistry(化学进展), 2017, 29(4): 435-442. doi:10.7536/PC161014http://dx.doi.org/10.7536/PC161014
Jung Y S, Jung W, Ross C A. Nano Lett, 2008, 8(9): 2975-2981. doi:10.1021/nl802011whttp://dx.doi.org/10.1021/nl802011w
Xu Jihua(徐纪华), Chen Yinqi(陈印启), Yin Yuhua(尹玉华), Jiang Run(蒋润), Wang Zheng(王铮), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报), 2020, 51(6): 632-640. doi:10.11777/j.issn1000-3304.2019.19204http://dx.doi.org/10.11777/j.issn1000-3304.2019.19204
Li D , Zhou C, Xiong S , Qu X P, Graig G S, Nealey P F. Soft Matter, 2019, 15(48): 9991-9996. doi:10.1039/c9sm02039jhttp://dx.doi.org/10.1039/c9sm02039j
Liu Y, Ji S. Mol Syst Des Eng, 2018, 3(2): 342-347. doi:10.1039/c7me00101khttp://dx.doi.org/10.1039/c7me00101k
Zhang X S(张潇飒), Ji S X(季生象). Chin J Appl Chem(应用化学), 2018, 35(12): 1420-1426. doi:10.11944/j.issn.1000-0518.2018.12.180075http://dx.doi.org/10.11944/j.issn.1000-0518.2018.12.180075
Hu Xiejun(胡卨俊), Hao Jinlong(郝金龙), Wang Zheng(王铮), Yin Yuhua(尹玉华), Jiang Run(蒋润), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报), 2021, 52(10): 1379-1389. doi:10.11777/j.issn1000-3304.2021.21082http://dx.doi.org/10.11777/j.issn1000-3304.2021.21082
Pang Y, Wan L, Huang G, Zhang X, Jin X, Xu P, Liu Y, Han M, Wu G P, Ji S. Macromolecules, 2017, 50(17): 6733-6741. doi:10.1021/acs.macromol.7b00743http://dx.doi.org/10.1021/acs.macromol.7b00743
Jacobberger R M, Vikram T, Wu G P, Chang T H, Saraswat V, Way A J, Jinkins K R, Ma Z, Nealey P F, Hur S, Xiong S, Arnold M S. Nat Commun, 2020, 11(1): 1-10. doi:10.1038/s41467-020-17938-3http://dx.doi.org/10.1038/s41467-020-17938-3
Zhou C, Dolejsi M, Xiong S, Ren J, Ashley E M, Craig G S, Nealey P F. Nanotechnology, 2019, 30(45): 455302. doi:10.1088/1361-6528/ab34f6http://dx.doi.org/10.1088/1361-6528/ab34f6
Li X, Liu Y, Wan L, Li Z, Suh H, Ren J, Ocola L E, Hu W, Ji S, Nealey P F. ACS Macro Lett, 2016, 5(3): 396-401. doi:10.1021/acsmacrolett.6b00011http://dx.doi.org/10.1021/acsmacrolett.6b00011
Xiong S, Li D, Hur S, Craig G S, Arges C G, Qu X P, Nealey P F. Macromolecules, 2018, 51(18): 7145-7151. doi:10.1021/acs.macromol.8b01275http://dx.doi.org/10.1021/acs.macromol.8b01275
Chang T, Xiong S, Liu C C, Liu D, Nealey P F, Ma Z. Macromol Rapid Commun, 2017, 38(18): 1700285. doi:10.1002/marc.201700285http://dx.doi.org/10.1002/marc.201700285
Suh H S, Kim D H, Moni P, Xiong S, Ocola L E, Zaluzec N J, Gleason K K, Nealey P F. Nat Nanotechnol, 2017, 12(6): 575-581. doi:10.1038/nnano.2017.34http://dx.doi.org/10.1038/nnano.2017.34
Xiong S, Wan L, Ishida Y, Chapuis Y, Craig G S W, Ruiz R, Nealey P F. ACS Nano, 2016, 10(8): 7855-7865. doi:10.1021/acsnano.6b03667http://dx.doi.org/10.1021/acsnano.6b03667
Segal-Peretz T, Ren J, Xiong S, Khaira G, Bowen A, Ocola L E, Divan R, Doxastakis M, Ferrier N J, de Pablo J, Nealey P F. ACS Nano, 2017, 11(2): 1307-1319. doi:10.1021/acsnano.6b05657http://dx.doi.org/10.1021/acsnano.6b05657
Lei W, Ji S, Liu C C, Craig G W, Nealey P F. Soft Mater, 2016, 12(11): 2914-2922
Jin X, Zhang X, Wan L, Nealey P F, Ji S. Polymer, 2014, 55(15): 3278-3283. doi:10.1016/j.polymer.2014.05.040http://dx.doi.org/10.1016/j.polymer.2014.05.040
Liu K, Yang C M, Yang B M, Zhang L, Huang W C, Ouyang X P, Qi F G, Zhao N, Bian F G. Chinese J Polym Sci, 2020, 38(1): 92-99. doi:10.1007/s10118-019-2315-zhttp://dx.doi.org/10.1007/s10118-019-2315-z
Zhang X, Chen J, Xu L, Liu T. Chinese J Polym Sci, 2021, 39(11): 1502-1509. doi:10.1007/s10118-021-2591-2http://dx.doi.org/10.1007/s10118-021-2591-2
Zhao B, Liu M J, Wang C, Chen Y C, Xu Y C. Chinese J Polym Sci, 2021, 39(7): 925-933. doi:10.1007/s10118-021-2554-7http://dx.doi.org/10.1007/s10118-021-2554-7
Ji S, Nagpal U, Liu G, Delcambre S P, Müller M, de Pablo J J, Nealey P F. ACS Nano, 2012, 6(6): 5440-5448. doi:10.1021/nn301306vhttp://dx.doi.org/10.1021/nn301306v
Ji S, Liu C C, Liao W, Fenske A L, Craig G S, Nealey P F. Macromolecules, 2011, 44(11): 4291-4300. doi:10.1021/ma2005734http://dx.doi.org/10.1021/ma2005734
Ji S X, Liao W, Nealey P F. Macromolecules, 2010, 43(16): 6919-6922. doi:10.1021/ma1007946http://dx.doi.org/10.1021/ma1007946
Ji S, Liu C C, Liu G, Nealey P F. ACS Nano, 2010, 4(2): 599-609. doi:10.1021/nn901342jhttp://dx.doi.org/10.1021/nn901342j
Liu G, Stoykovich M P, Ji S, Stuen K O, Craig G S W, Nealey P F. Macromolecules, 2009, 42(8): 3063-3072. doi:10.1021/ma802773hhttp://dx.doi.org/10.1021/ma802773h
Zhou J, Thapar V, Chen Y, Wu B X, Craig G S W, Nealey P F, Hur S M, Chang T H, Xiong S. ACS Appl Mater Interfaces, 2021, 13(34): 41190-41199. doi:10.1021/acsami.1c08940http://dx.doi.org/10.1021/acsami.1c08940
Borah D, Rassapa S, Shaw M T, Hobbs R G, Petkov N, Schmidt M, Holmes J D, Morris M A. J Mater Chem C, 2013, 1(6): 1192-1196. doi:10.1039/c2tc00289bhttp://dx.doi.org/10.1039/c2tc00289b
Maher M J, Rettner C T, Bates C M, Blachut G, Carlson M C, Durand W J, Ellison C J, Sanders D P, Cheng J Y, Willson C G. ACS Appl Mater Interfaces, 2015, 7(5): 3323-3328. doi:10.1021/am508197khttp://dx.doi.org/10.1021/am508197k
Ouk Kim S, Solak H H, Stoykovich M P, Ferrier N J, de Pablo J J, Nealey P F. Nature, 2003, 424(6947): 411-414. doi:10.1038/nature01775http://dx.doi.org/10.1038/nature01775
Liu C C, Han E, Onses M S, Thode C J, Ji S, Gopalan P, Nealey P F. Macromolecules, 2011, 44(7): 1876-1885. doi:10.1021/ma102856thttp://dx.doi.org/10.1021/ma102856t
Bates F S, Fredrickson G H. Phy Today, 2000, 52. doi:10.1063/1.882522http://dx.doi.org/10.1063/1.882522
Leibler L. Macromolecules, 1980, 13(6): 1602-1617. doi:10.1021/ma60078a047http://dx.doi.org/10.1021/ma60078a047
Zhao Y, Sivaniah E, Hashimoto T. Macromolecules, 2008, 24(41): 9948-9951
Wan L, Ruiz R, Gao H, Patel K C, Albrecht T R, Yin J, Kim J, Cao Y, Lin G. ACS Nano, 2015, 9(7): 7506-7514. doi:10.1021/acsnano.5b02613http://dx.doi.org/10.1021/acsnano.5b02613
Sinturel C, Bates F S, Hillmyer M A. ACS Macro Lett, 2015, 4(9): 1044-1050. doi:10.1021/acsmacrolett.5b00472http://dx.doi.org/10.1021/acsmacrolett.5b00472
Park S M, Park O H, Cheng J Y, Rettner C T, Kim H C. Nanotechnology, 2008, 19(45): 455304. doi:10.1088/0957-4484/19/45/455304http://dx.doi.org/10.1088/0957-4484/19/45/455304
Jeong G, Yu D M, Mapas J K D, Sun Z, Rzayev J, Russell T P. Macromolecules, 2017, 50(18): 7148-7154. doi:10.1021/acs.macromol.7b01443http://dx.doi.org/10.1021/acs.macromol.7b01443
Yu D M, Mapas J K D, Kim H, Choi J, Ribbe A E, Rzayev J, Russell T P. Macromolecules, 2018, 51(3): 1031-1040. doi:10.1021/acs.macromol.7b02221http://dx.doi.org/10.1021/acs.macromol.7b02221
Yu D M, Smith D M, Kim H, Mapas J K D, Rzayev J, Russell T P. Macromolecules, 2019, 52(10): 3592-3600. doi:10.1021/acs.macromol.9b00488http://dx.doi.org/10.1021/acs.macromol.9b00488
Yu D M, Smith D M, Kim H, Rzayev J, Russell T P. Macromolecules, 2019, 52(17): 6458-6466. doi:10.1021/acs.macromol.9b01323http://dx.doi.org/10.1021/acs.macromol.9b01323
Kwak J, Mishra A K, Lee J, Lee K S, Choi C, Maiti S, Kim M, Kim J K. Macromolecules, 2017, 50(17): 6813-6818. doi:10.1021/acs.macromol.7b00945http://dx.doi.org/10.1021/acs.macromol.7b00945
Sweat D P, Kim M, Schmitt A K, Perroni D V, Fry C G, Mahanthappa M K, Gopalan P. Macromolecules, 2014, 47(18): 6302-6310. doi:10.1021/ma501126thttp://dx.doi.org/10.1021/ma501126t
Li X, Deng H. ACS Appl Polym Mater, 2020, 2(8): 3601-3611. doi:10.1021/acsapm.0c00608http://dx.doi.org/10.1021/acsapm.0c00608
Wang C, Li X, Deng H. ACS Macro Lett, 2019, 8(4): 368-373. doi:10.1021/acsmacrolett.9b00178http://dx.doi.org/10.1021/acsmacrolett.9b00178
Li X, Wang C, Liu Y, Deng H. J Mater Chem C, 2019, 7(9): 2535-2540. doi:10.1039/c8tc06480fhttp://dx.doi.org/10.1039/c8tc06480f
Cao H, Dai L, Liu Y, Li X, Yang Z, Deng H. Macromolecules, 2020, 53(20): 8757-8764. doi:10.1021/acs.macromol.0c00777http://dx.doi.org/10.1021/acs.macromol.0c00777
Yao L, Oquendo L E, Schulze M W, Lewis R M, III , Gladfelter W L, Hillmyer M A. ACS Appl Mater Interfaces, 2016, 8(11): 7431-7439. doi:10.1021/acsami.5b12785http://dx.doi.org/10.1021/acsami.5b12785
Schulze M W, Sinturel C, Hillmyer M A. ACS Macro Lett, 2015, 4(9): 1027-1032. doi:10.1021/acsmacrolett.5b00458http://dx.doi.org/10.1021/acsmacrolett.5b00458
Kennemur J G, Yao L, Bates F S, Hillmyer M A. Macromolecules, 2014, 47(4): 1411-1418. doi:10.1021/ma4020164http://dx.doi.org/10.1021/ma4020164
Zhang X, He Q, Chen Q, Nealey P F, Ji S. ACS Macro Lett, 2018, 7(6): 751-756. doi:10.1021/acsmacrolett.8b00293http://dx.doi.org/10.1021/acsmacrolett.8b00293
Pang Y, Jin X, Huang G, Wan L, Ji S. Macromolecules, 2019, 52(8): 2987-2994. doi:10.1021/acs.macromol.9b00174http://dx.doi.org/10.1021/acs.macromol.9b00174
Yang G W, Wu G P, Chen X, Xiong S, Arges C G, Ji S, Nealey P F, Lu X B, Darensbourg D J, Xu Z K. Nano Lett, 2017, 17(2): 1233-1239. doi:10.1021/acs.nanolett.6b05059http://dx.doi.org/10.1021/acs.nanolett.6b05059
Nunns A, Gwyther J, Manners I. Polymer, 2013, 54(4): 1269-1284. doi:10.1016/j.polymer.2012.11.057http://dx.doi.org/10.1016/j.polymer.2012.11.057
Lo T Y, Krishnan M R, Lu K Y, Ho R M. Prog Polym Sci, 2018, 77: 19-68. doi:10.1016/j.progpolymsci.2017.10.002http://dx.doi.org/10.1016/j.progpolymsci.2017.10.002
Jung Y S, Chang J B, Verploegen E, Berggren K K, Ross C A. Nano Lett, 2010, 10(3): 1000-1005. doi:10.1021/nl904141rhttp://dx.doi.org/10.1021/nl904141r
Jeong J W, Park W I, Kim M J, Ross C A, Jung Y S. Nano Lett, 2011, 11(10): 4095-4101. doi:10.1021/nl2016224http://dx.doi.org/10.1021/nl2016224
Shi L Y, Lee S, Cheng L C, Huang H, Liao F, Ran R, Yager K G, Ross C A. Macromolecules, 2019, 52(2): 679-689. doi:10.1021/acs.macromol.8b01938http://dx.doi.org/10.1021/acs.macromol.8b01938
Seshimo T, Maeda R, Odashima R, Takenaka Y, Kawana D, Ohmori K, Hayakawa T. Sci Rep, 2016, 6(1): 1-8. doi:10.1038/srep19481http://dx.doi.org/10.1038/srep19481
Hur Y H, Song S W, Kim J M, Park W I, Kim K H, Kim Y, Jung Y S. Adv Funct Mater, 2018, 28(28): 1800765. doi:10.1002/adfm.201800765http://dx.doi.org/10.1002/adfm.201800765
Rodwogin M D, Spanjers C S, Leighton C, Hillmyer M A. ACS Nano, 2010, 4(2): 725-732. doi:10.1021/nn901190ahttp://dx.doi.org/10.1021/nn901190a
Pitet L M, Wuister S F, Peeters E, Kramer E J, Hawker C J, Meijer E W. Macromolecules, 2013, 46(20): 8289-8295. doi:10.1021/ma401719phttp://dx.doi.org/10.1021/ma401719p
van Genabeek B, de Waal B F, Gosens M M, Pitet L M, Palmans A R A, Meijer E W. J Am Chem Soc, 2016, 138(12): 4210-4218. doi:10.1021/jacs.6b00629http://dx.doi.org/10.1021/jacs.6b00629
Kawamoto K, Zhong M J, Gadelrab K R, Cheng L C, Ross C A, Alexander-Katz A, Johnson J A. J Am Chem Soc, 2016, 138(36): 11501-11504. doi:10.1021/jacs.6b07670http://dx.doi.org/10.1021/jacs.6b07670
Cheng L C, Gadelrab K R, Kawamoto K, Yager K G, Johnson J A, Alexander-Katz A, Ross C A. Nano Lett, 2018, 18(7): 4360-4369. doi:10.1021/acs.nanolett.8b01389http://dx.doi.org/10.1021/acs.nanolett.8b01389
Cheng Kerui(陈柯睿), Hu Xin(胡欣), Qiu Jiangkai(邱江凯), Zhu Ning(朱宁), Guo Kai(郭凯). Progress in Chemistry(化学进展), 2020, 32(1): 93-102
Chen K, Hu X, Zhu N, Guo K. Macromol Rapid Commun, 2020, 41(20): 2000357. doi:10.1002/marc.202000357http://dx.doi.org/10.1002/marc.202000357
Guo Z H, Le A N, Feng X, Choo Y, Liu B, Wang D, Wan Z, Gu Y, Zhao J, Li V, Osuji C O, Johnson J A, Zhong M. Angew Chem Int Ed, 2018, 57(28): 8493-8497. doi:10.1002/anie.201802844http://dx.doi.org/10.1002/anie.201802844
Fei H F, Yavitt B M, Nuguri S, Yu Y G, Watkins J J. Macromolecules, 2021, 54(23): 10943-10950. doi:10.1021/acs.macromol.1c01311http://dx.doi.org/10.1021/acs.macromol.1c01311
Luo Y, Montarnal D, Kim S, Shi W, Barteau K P, Pester C W, Hustad P D, Christianson M D, Fredrickson G H, Kramer E J, Hawker C J. Macromolecules, 2015, 48(11): 3422-3430. doi:10.1021/acs.macromol.5b00518http://dx.doi.org/10.1021/acs.macromol.5b00518
Aissou K, Mumtaz M, Fleury G, Portale G, Navarro C, Cloutet E, Brochon C, Ross C A, Hadziioannou G. Adv Mater, 2015, 27(2): 261-265. doi:10.1002/adma.201404077http://dx.doi.org/10.1002/adma.201404077
Luo Y, Kim B, Montarnal D, Mester Z, Pester C W, McGrath A J, Hill G, Kramer E J, Fredrickson G H, Hawker C J. J Polym Sci, Part A: Polym Chem, 2016, 54(14): 2200-2208. doi:10.1002/pola.28093http://dx.doi.org/10.1002/pola.28093
Luo Y, Montarnal D, Treat N J, Hustad P D, Christianson M D, Kramer E J, Fredrickson G H, Hawker C J. ACS Macro Lett, 2015, 4(12): 1332-1336. doi:10.1021/acsmacrolett.5b00767http://dx.doi.org/10.1021/acsmacrolett.5b00767
Hirao A, Loykulnant S, Ishizone T. Prog Polym Sci, 2002, 27(8): 1399-1471. doi:10.1016/s0079-6700(02)00016-3http://dx.doi.org/10.1016/s0079-6700(02)00016-3
Ayothi R, Yi Y, Cao H B, Yueh W, Putna S, Ober C K. Chem Mater, 2007, 19(6): 1434-1444. doi:10.1021/cm062802khttp://dx.doi.org/10.1021/cm062802k
Kang H, Kim Y J, Gopalan P, Nealey P F. J Vac Sci Technol, B: Microelectron Nanometer Struct. Process, Meas, Phenom, 2009, 27(6): 2993-2997. doi:10.1116/1.3256632http://dx.doi.org/10.1116/1.3256632
Azuma K, Sun J, Choo Y, Rokhlenko Y, Dwyer J H, Schweitzer B, Hayakawa T, Osuji C O, Gopalan P. Macromolecules, 2018, 51(16): 6460-6467. doi:10.1021/acs.macromol.8b01409http://dx.doi.org/10.1021/acs.macromol.8b01409
Vu T, Mahadevapuram N, Perera G M, Stein G E. Macromolecules, 2011, 44(15): 6121-6127. doi:10.1021/ma2009222http://dx.doi.org/10.1021/ma2009222
Matsen M W. Macromolecules, 2010, 43(3): 1671-1674. doi:10.1021/ma902173whttp://dx.doi.org/10.1021/ma902173w
Khanna V, Cochran E W, Hexemer A, Stein G, Fredrickson G H, Kramer E J, Li X, Wang J, Hahn S. Macromolecules, 2006, 39(26): 9346-9356. doi:10.1021/ma0609228http://dx.doi.org/10.1021/ma0609228
Matsen M W, Thompson R. J Chem Phys, 1999, 111(15): 7139-7146. doi:10.1063/1.480006http://dx.doi.org/10.1063/1.480006
Ryu C, Lee M, Hajduk D, Lodge T. J Polym Sci, Part B: Polym Phys, 1997, 35(17): 2811-2823. doi:10.1002/(sici)1099-0488(199712)35:17<2811::aid-polb6>3.0.co;2-thttp://dx.doi.org/10.1002/(sici)1099-0488(199712)35:17<2811::aid-polb6>3.0.co;2-t
Sun J, Lee C, Osuji C O, Gopalan P. Macromolecules, 2021, 54(20): 9542-9550. doi:10.1021/acs.macromol.1c01611http://dx.doi.org/10.1021/acs.macromol.1c01611
Goodby J. Curr Opin Solid State Mater Sci, 1999, 4(4): 361-368. doi:10.1016/s1359-0286(99)00035-2http://dx.doi.org/10.1016/s1359-0286(99)00035-2
Cai F, Chen Y X, Wang W Z, Yu H F. Chinese J Polym Sci, 2021, 39(4): 397-416. doi:10.1007/s10118-021-2531-1http://dx.doi.org/10.1007/s10118-021-2531-1
Li Yujie(李玉洁), Luo Longfei(罗龙飞), Shen Zhihao(沈志豪), Fan Xinghe(范星河), Zheng Shijun(郑世军). Acta Polymerica Sinica(高分子学报), 2021, 52(12): 1611-1621. doi:10.11777/j.issn1000-3304.2021.21158http://dx.doi.org/10.11777/j.issn1000-3304.2021.21158
Xiao A Q, Lyu X L. Pan H B, Tang Z H, Zhang W, Shen Z H, Fan X H. Chinese J Polym Sci, 2020, 38(11): 1185-1191. doi:10.1007/s10118-020-2431-9http://dx.doi.org/10.1007/s10118-020-2431-9
Demus D. Mol Cryst Liq Cryst Sci Technol, Sect A, 2001, 364(1): 25-91
Zha R H, de Waal B F M, Lutz M, Teunissen A J P, Meijer E W. J Am Chem Soc, 2016, 138(17): 5693-5698. doi:10.1021/jacs.6b02172http://dx.doi.org/10.1021/jacs.6b02172
Seki T, Nagano S, Hara M. Polymer, 2013, 54(22): 6053-6072. doi:10.1016/j.polymer.2013.08.058http://dx.doi.org/10.1016/j.polymer.2013.08.058
Wittmann J C, Smith P. Nature, 1991, 352(6334): 414-417. doi:10.1038/352414a0http://dx.doi.org/10.1038/352414a0
Nickmans K, Murphy J N, de Waal B, Leclère P, Doise J, Gronheid R, Broer D J, Schenning A P H J. Adv Mater, 2016, 28(45): 10068-10072. doi:10.1002/adma.201602891http://dx.doi.org/10.1002/adma.201602891
Yang W, Zhang W, Luo L, Lyu X, Xiao A, Shen Z, Fan X H. Chem Commun, 2020, 56(71): 10341-10344. doi:10.1039/d0cc04377jhttp://dx.doi.org/10.1039/d0cc04377j
Yang W, Liu D, Luo L, Li P, Liu Y, Shen Z, Lei H, Fan X H, Zhou Q F. Chem Commun, 2022, 58(1): 108-111. doi:10.1039/d1cc05886jhttp://dx.doi.org/10.1039/d1cc05886j
Durand W J, Blachut G, Maher M J, Sirard S, Tein S, Carlson M C, Asano Y, Zhou S X, Lane A P, Bates C M, Ellison C J, Willson C G. J Polym Sci, Part A: Polym Chem, 2015, 53(2): 344-352. doi:10.1002/pola.27370http://dx.doi.org/10.1002/pola.27370
Maher M J, Bates C M, Blachut G, Sirard S, Self J L, Carlson M C, Dean L M, Cushen J D, Durand W J, Hayes C O, Ellison C J, Willson C G. Chem Mater, 2014, 26(3): 1471-1479. doi:10.1021/cm403813qhttp://dx.doi.org/10.1021/cm403813q
Maher M J, Bates C M, Blachut G, Carlson M C, Self J L, Janes D W, Durand W J, Lane A P, Ellison C J, Willson C G. ACS Macro Lett, 2014, 3(8): 824-828. doi:10.1021/mz500370rhttp://dx.doi.org/10.1021/mz500370r
Cushen J, Wan L, Blachut G, Maher M J, Albrecht T R, Ellison C J, Willson C G, Ruiz R. ACS Appl Mater Interfaces, 2015, 7(24): 13476-13483. doi:10.1021/acsami.5b02481http://dx.doi.org/10.1021/acsami.5b02481
Blachut G, Sirard S M, Michael J M, Asano Y, Someya Y, Lane A P, Durand W J, Bates C M, Dinhobl A M, Gronheid R, Hymes D, Ellison C J, Willson C G. Chem Mater, 2016, 28(24): 8951-8961. doi:10.1021/acs.chemmater.6b03633http://dx.doi.org/10.1021/acs.chemmater.6b03633
Sunday D F, Maher M J, Tein S, Carlson M C, Ellison C J, Willson C G, Kline R J. ACS Macro Lett, 2016, 5(12): 1306-1311. doi:10.1021/acsmacrolett.6b00684http://dx.doi.org/10.1021/acsmacrolett.6b00684
Sunday D F, Maher M J, Hannon A F, Liman C D, Tein S, Blachut G, Asano Y, Ellison C J, Willson C G, Kline R J. Macromolecules, 2018, 51(1): 173-180. doi:10.1021/acs.macromol.7b01982http://dx.doi.org/10.1021/acs.macromol.7b01982
Doise J, Koh J H, Kim Y J, Zhu Q J, Kinoshita N, Suh H S, Delgadillo P R, Vandenberghe G, Willson C G, Ellison C J. ACS Appl Mater Interfaces, 2019, 11(51): 48419-48427. doi:10.1021/acsami.9b17858http://dx.doi.org/10.1021/acsami.9b17858
Kim J Y, Liu P, Maher M J, Callan D H, Bates C M, Carlson M C, Asano Y, Blachut G, Rettner C T, Cheng J Y, Sunday D F, Kline R J, Sanders D P, Lynd N A, Ellison C J, Willson C G, Baiz C R. ACS Appl Mater Interfaces, 2020, 12(20): 23399-23409. doi:10.1021/acsami.0c02997http://dx.doi.org/10.1021/acsami.0c02997
Cushen J D, Bates C M, Rausch E L, Dean L M, Zhou S X, Willson C G, Ellison C J. Macromolecules, 2012, 45: 8722-8728. doi:10.1021/ma301238jhttp://dx.doi.org/10.1021/ma301238j
Bates C M, Seshimo T, Maher M J, Durand W J, Cushen J D, Dean L M, Blachut G, Ellison C J, Willson C G. Science, 2012, 338(6108): 775-779. doi:10.1126/science.1226046http://dx.doi.org/10.1126/science.1226046
Cushen J D, Otsuka I, Bates C M, Halila S, Fort S, Rochas C, Easley J A, Rausch E L, Thio A, Borsali R, Willson C G, Elliso C J. ACS Nano, 2012, 6(4): 3424-3433. doi:10.1021/nn300459rhttp://dx.doi.org/10.1021/nn300459r
Lane A P, Yang X M, Maher M J, Blachut G, Asano Y, Someya Y, Mallavarapu A, Sirard S M, Ellison C J, Willson C G. ACS Nano, 2017, 11(8): 7656-7665. doi:10.1021/acsnano.7b02698http://dx.doi.org/10.1021/acsnano.7b02698
Liang Yiwei(梁益玮), Liu Peng(刘鹏), Yin Shuxing(尹树杏), Liu Jingrui(刘景瑞), Zhang Mingzu(张明组), He Jinlin何金林, Ni Peihong(倪沛红). Acta Polymerica Sinica(高分子学报), 2020, 51(4): 366-376. doi:10.11777/j.issn1000-3304.2019.19210http://dx.doi.org/10.11777/j.issn1000-3304.2019.19210
Hirai T, Leolukman M, Liu C C, Han E, Kim Y J, Ishida Y, Hayakawa T, Kakimoto M A, Nealey P F, Gopalan P. Adv Mater, 2009, 21(43): 4334-4338. doi:10.1002/adma.200900518http://dx.doi.org/10.1002/adma.200900518
Tada Y, Yoshida H, Ishida Y, Hirai T, Bosworth J K, Dobisz E, Ruiz R, Takenaka M, Hayakawa T, Hasegawa H. Macromolecules, 2011, 45(1): 292-304. doi:10.1021/ma201822ahttp://dx.doi.org/10.1021/ma201822a
Goseki R, Hirai T, Ishida Y, M-aKakimoto, Hayakawa T. Polym J, 2012, 44(6): 658-664. doi:10.1038/pj.2012.67http://dx.doi.org/10.1038/pj.2012.67
Kihara N, Seino Y, Sato H, Kasahara Y, Kobayashi K, Miyagi K, Minegishi S, Yatsuda K, Fujiwara T, Hirayanagi N, Kanai H, Kawamonzen Y, Kodera K, Azuma T, Hayakawa T. J Micro/Nanolithogr, MEMS, MOEMS, 2015, 14(2): 023502. doi:10.1117/1.jmm.14.2.023502http://dx.doi.org/10.1117/1.jmm.14.2.023502
Nakatani R, Takano H, Chandra A, Yoshimura Y, Wang L, Suzuki Y, Tanaka Y, Maeda R, Kihara N, Minegishi S, Miyagi K, Kasahara Y, Sato H, Seino Y, Azuma T, Yokoyama H, Ober C K, Hayakawa T. ACS Appl Mater Interfaces, 2017, 9(37): 31266-31278. doi:10.1021/acsami.6b16129http://dx.doi.org/10.1021/acsami.6b16129
Yu X, Yue K, Hsieh I F, Li Y, Dong X H, Liu C, Xin Y, Wang H F, Shi A C, Newkome G R, Ho R M, Chen E Q, Zhang W B, Cheng S Z D. Pro Natl Acad Sci USA, 2013, 110(25): 10078-10083. doi:10.1073/pnas.1302606110http://dx.doi.org/10.1073/pnas.1302606110
Yue K, Liu C, Huang M, Huang J, Zhou Z, Wu K, Liu H, Lin Z, Shi A C, Zhang W B, Cheng S Z D. Macromolecules, 2017, 50(1): 303-314. doi:10.1021/acs.macromol.6b02446http://dx.doi.org/10.1021/acs.macromol.6b02446
Huang M, Yue K, Huang J, Liu C, Zhou Z, Wang J, Wu K, Shan W, Shi A C, Cheng S Z D. ACS Nano, 2018, 12(2): 1868-1877. doi:10.1021/acsnano.7b08687http://dx.doi.org/10.1021/acsnano.7b08687
Wu K, Huang M, Yue K, Liu C, Lin Z, Liu H, Zhang W, Hsu C H, Shi A C, Zhang W B, Cheng S Z D. Macromolecules, 2014, 47(14): 4622-4633. doi:10.1021/ma501017ehttp://dx.doi.org/10.1021/ma501017e
Hsu C H, Yue K, Wang J, Dong X H, Xia Y, Jiang Z, Thomas E L, Cheng S Z D. Macromolecules, 2017, 50(18): 7282-7290. doi:10.1021/acs.macromol.7b01598http://dx.doi.org/10.1021/acs.macromol.7b01598
Dong X H, Ni B, Huang M, Hsu C H, Chen Z, Lin Z, Zhang W B, Shi A C, Cheng S Z D. Macromolecules, 2015, 48(19): 7172-7179. doi:10.1021/acs.macromol.5b01661http://dx.doi.org/10.1021/acs.macromol.5b01661
Hsu C H, Dong X H, Lin Z, Ni B, Lu P, Jiang Z, Tian D, Shi A C, Thomas E L, Cheng S Z D. ACS Nano, 2016, 10(1): 919-929. doi:10.1021/acsnano.5b06038http://dx.doi.org/10.1021/acsnano.5b06038
Zhang W, Huang M, Su H, Zhang S, Yue K, Dong X H, Li X, Liu H, Zhang S, Wesdemiotis C, Lotz B, Zhang W B, Li Y, Cheng S Z D. ACS Cent Sci, 2016, 2(1): 48-54. doi:10.1021/acscentsci.5b00385http://dx.doi.org/10.1021/acscentsci.5b00385
Ji M S, Guo Q Y, Yan X Y, Liu Y, Wu Y J, Yue K, Guo Z H. Chem-Eur J, 2021, 27(30): 7992-7997. doi:10.1002/chem.202100638http://dx.doi.org/10.1002/chem.202100638
0
Views
179
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution