浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
Li Pan, E-mail: lilypan@tju.edu.cn
Published:20 November 2022,
Published Online:19 August 2022,
Received:25 April 2022,
Accepted:07 May 2022
移动端阅览
吕仪,高欢,潘莉.丙烯与1,3-丁二烯配位共聚合制备兼具高刚性与高韧性的嵌段共聚物[J].高分子学报,2022,53(11):1409-1420.
Lv Yi,Gao Huan,Pan Li.Block Copolymers with High Rigidity and Toughness Prepared via Coordination Copolymerization of Propylene with 1,3-Butadiene[J].ACTA POLYMERICA SINICA,2022,53(11):1409-1420.
吕仪,高欢,潘莉.丙烯与1,3-丁二烯配位共聚合制备兼具高刚性与高韧性的嵌段共聚物[J].高分子学报,2022,53(11):1409-1420. DOI: 10.11777/j.issn1000-3304.2022.22141.
Lv Yi,Gao Huan,Pan Li.Block Copolymers with High Rigidity and Toughness Prepared via Coordination Copolymerization of Propylene with 1,3-Butadiene[J].ACTA POLYMERICA SINICA,2022,53(11):1409-1420. DOI: 10.11777/j.issn1000-3304.2022.22141.
以二甲基吡啶胺铪/[Ph
3
C
]
[B(C
6
F
5
)
4
]
/Al
i
Bu
3
为催化体系,通过一锅两步法在温和条件下制备了一系列高分子量、窄分子量分布且具有高等规度的等规聚丙烯(
i
PP,硬段)与丙烯-1
3-丁二烯(1
3-BD)无
规共聚物(软段)的嵌段共聚物. 通过高温核磁(
1
H-NMR、
13
C-NMR)、高温凝胶渗透色谱(GPC)、示差扫描量热法(DSC)、动态力学分析(DMA)和拉伸力学性能测试,对所制备嵌段聚合物的结构和性能进行了分析表征. 结果表明,1
3-BD以1
2-和
trans
-1
4-2种方式无规插入共聚物分子链中,且以
trans
-1
4-插入方式为主;共聚物具有较高的熔融温度(
T
m
约为158 ℃)和极低的玻璃化转变温度(
T
g
可达-70 ℃). 独特的软-硬结构赋予材料优异的力学性能:共聚物同时具有较高的拉伸强度(≥33 MPa)和断裂伸长率(最高为800%). 以上研究结果表明,通过调节软硬段的结构,可以高效制备兼具高刚性与高韧性的
i
PP嵌段共聚物,结合的丙烯与1
3-BD无规共聚物软段是对全同PP进行增韧改性非常有效的手段.
A series of propylene/1
3-butadiene (BD) block copolymers with high molecular weight (
>
1.3×10
5
) and narrow molecular weight distribution (1.8~2.0) were prepared
via
“one-pot
two-step” method by using dimethylpyridine amine hafnium/[Ph
3
C
]
[B(C
6
F
5
)
4
]
/Al
i
Bu
3
as catalyst system under mild conditions. By Varying the reaction time for each step and BD dosage in the second step
the block length of each block and composition of the soft block could be easily tuned. Molecular weight and molecular weight distribution
thermal properties
microstructure
and mechanical properties of the obtained block copolymers were clearly characterized by high temperature gel chromatography (GPC)
differential scanning calorimetry (DSC)
high temperature nuclear magnetic (NMR)
tensile test
etc
. The block copolymers contain both a hard
i
PP block and soft propylene/BD random copolymer block. It was revealed that 1
3-BD was randomly inserted into the molecular chain
via
both 1
2- and
trans
-1
4-insertion manners
and the amount of the latter was about six times that of the former. The copolymers showed high melting temperature (
T
m
≈ 158 ℃) and very low glass transition temperature (
T
g
around -70 ℃). The obtained block copolymers with both hard
i
PP segments and propylene/1
3-BD random copolymer block helped to achieve both high rigidity and toughness simultaneously. As proved
the block copolymers showed high tensile strength (≥33 MPa) and elongation at break (up to 800%). The above results indicated that
via
tuning the hard and soft block composition during the two-step copolymerization of propylene and BD
block copolymers with much improved tensile properties could be easily obtained. Incorporation of a very soft propylene-BD random copolymer block plays a vital role in
i
PP toughening. The research results will provide new idea for the development of the
i
PPs with excellent mechanical properties.
丙烯13-丁二烯配位共聚合嵌段共聚物增韧改性
Propylene13-ButadieneCoordination copolymerizationBlock copolymerToughening modification
Chung T C M. Macromol React Eng, 2014, 8(2): 69-80. doi:10.1002/mren.201300176http://dx.doi.org/10.1002/mren.201300176
Franssen N M, Reek J N, Bruin B S. Chem Soc Rev, 2013, 42(13): 5809-5832
Galli P, Vecellio G. Prog Polym Sci, 2001, 26(8):1287-1336. doi:10.1016/s0079-6700(01)00029-6http://dx.doi.org/10.1016/s0079-6700(01)00029-6
Shang R N, Gao H, Luo F L, Li Y L, Wang B, Ma Z, Pan L, Li Y S. Macromolecules, 2019, 52(23): 9280-9290. doi:10.1021/acs.macromol.9b00757http://dx.doi.org/10.1021/acs.macromol.9b00757
Du Huizhen(杜惠真), Yang Fei(杨飞), Zhang Kunyu(张坤玉), Ma Zhe(马哲), Wang Bin(王彬), Pan Li(潘莉), Li Yuesheng(李悦生). Acta Polymerica Sinica(高分子学报), 2018, (12): 1539-1547. doi:10.11777/j.issn1000-3304.2018.18090http://dx.doi.org/10.11777/j.issn1000-3304.2018.18090
Dasari A, Zhang Q X, Yu Z Z, Mai Y W. Macromolecules, 2010, 43(13): 5734-5739. doi:10.1021/ma100633yhttp://dx.doi.org/10.1021/ma100633y
Hernandez Y, Lozano T, Morales A B, Pardo F N, Lafleur P G, Valdes S S. J Compos Mater, 2017, 51(3): 373-380. doi:10.1177/0021998316644852http://dx.doi.org/10.1177/0021998316644852
Zhou F Q, Qi L C, He X L. Polym Adv Technol, 2020, 31(11): 2492-2503. doi:10.1002/pat.4964http://dx.doi.org/10.1002/pat.4964
Peng Wenli(彭文理), Chen Zhenbin(陈振斌), Zhang Wenxue(张文学), Zhang Yunfei(张云飞), Xu Renwei(徐人威), Zhu Bochao(朱博超). Petrochemical Technology(石油化工), 2019, 48(10): 1076-1083. doi:10.3969/j.issn.1000-8144.2019.10.015http://dx.doi.org/10.3969/j.issn.1000-8144.2019.10.015
Banerjee J, Soliya P, Pallavi M B, Mukhopadhyay S, Bandyopadhyay D, Chakrabarty K. Inter Polym Pros, 2016, 31(2): 188-197. doi:10.3139/217.3143http://dx.doi.org/10.3139/217.3143
Lin J H, Pan Y J, Liu C F, Huang C L, Hsieh C T, Chen C K. Materials, 2015, 8(12): 8850-8859. doi:10.3390/ma8125496http://dx.doi.org/10.3390/ma8125496
Lin Y, Chen H B, Chan C M, Wu J S. Macromolecules, 2008, 41(23): 9204-9213. doi:10.1021/ma801095dhttp://dx.doi.org/10.1021/ma801095d
Patel A C, Brahmbhatt R B, Devi S. J Appl Polym Sci, 2003, 88(1): 72-78. doi:10.1002/app.11554http://dx.doi.org/10.1002/app.11554
Poon B, Rogunova M, Chum S P, Hiltner A, Baer E. Polym Phys, 2004, 42(23): 4357-4370. doi:10.1002/polb.20290http://dx.doi.org/10.1002/polb.20290
Gao Huan(高欢), Shao Pingjun(邵平均), Li Bang(李邦), Pan Li(潘莉). Acta Polymerica Sinica(高分子学报), 2021, (11): 1498-1505. doi:10.11777/j.issn1000-3304.2021.21125http://dx.doi.org/10.11777/j.issn1000-3304.2021.21125
An Y J, Xing H P, Wang Y H, Tang T. J Appl Polym Sci, 2012, 125(4): 2724-2731. doi:10.1002/app.36591http://dx.doi.org/10.1002/app.36591
Tian J, Hustad P D, Coates G W. J Am Chem Soc, 2001, 123(21): 5134-5135. doi:10.1021/ja0157189http://dx.doi.org/10.1021/ja0157189
Naga N, Shiono T, Ikeda T. Macromolecules, 1999, 32(5): 1348-1355. doi:10.1021/ma9814144http://dx.doi.org/10.1021/ma9814144
Shi X C, Tang X Y, Li Y S. Polymer, 2011, 52(14): 3053-3058. doi:10.1016/j.polymer.2011.04.058http://dx.doi.org/10.1016/j.polymer.2011.04.058
Shao Y T, Wu C G, Cheng S Y, Zhou F, Yan H B. Polym Test, 2015, 41: 252-263. doi:10.1016/j.polymertesting.2014.12.008http://dx.doi.org/10.1016/j.polymertesting.2014.12.008
Guo Y T, Fu Z S, Xu J T, Fan Z Q. Polymer, 2017, 122: 77-86. doi:10.1016/j.polymer.2017.06.042http://dx.doi.org/10.1016/j.polymer.2017.06.042
Rose C D, Iacono S D, Auriemma F, Ciaccia E, Resconi L. Macromolecules, 2006, 39(18): 6098-6109
Edson J B, Wang Z G, Kramer E J, Coates G W. J Am Chem Soc, 2008, 130(14): 4968-4977. doi:10.1021/ja077772ghttp://dx.doi.org/10.1021/ja077772g
Hustad P D, Coates G W. Macromolecules, 2005, 38(3): 851-860
Hotta A E, Cochran J, Ruokolainen V, Khanna G H, Fredrickson E J, Kramer Y W, Shin F, Shimizu A E, Cherian P D, Hustad J M, Rose G, Coates W. Pans, 2006, 103(42): 15327-15332. doi:10.1073/pnas.0602894103http://dx.doi.org/10.1073/pnas.0602894103
Anatoliy K, Gaurav K M, Alexander A, Michael T, Zhang Q, Paul J D. ACS Sustainable Chem Eng, 2020, 8(8): 3273-3282. doi:10.1021/acssuschemeng.9b06881http://dx.doi.org/10.1021/acssuschemeng.9b06881
Zhong Y H, Wang B L, Cui D M. Polym Chem, 2021, 12(31): 4576-4582. doi:10.1039/d1py00840dhttp://dx.doi.org/10.1039/d1py00840d
Wu C J, Liu B, Lin F, Wang M Y, Cui D M. Angew Chem Int Ed, 2017, 56(24): 6975-6979. doi:10.1002/anie.201702128http://dx.doi.org/10.1002/anie.201702128
Zhang K, Dou Y L, Jiang Y, Zhang Z, Li S H, Cui D M. Macromolecules, 2021, 54(20): 9445-9451. doi:10.1021/acs.macromol.1c01384http://dx.doi.org/10.1021/acs.macromol.1c01384
Du G X, Xue J P, Peng D Q, Yu C, Wang H H, Zhou Y N, Bi J J, Zhang S W, Dong Y P, Li X F. Polym Chem, 2015, 53(24): 2898-290. doi:10.1002/pola.27769http://dx.doi.org/10.1002/pola.27769
Guo F, Meng R, Li Y, Hou Z M. Polymer, 2015, 76: 159-167. doi:10.1016/j.polymer.2015.08.060http://dx.doi.org/10.1016/j.polymer.2015.08.060
Ishihara T, Shiono T. Macromolecules, 2003, 36(26): 9675-9677. doi:10.1021/ma0349480http://dx.doi.org/10.1021/ma0349480
Ishihara T, Shiono T. J Am Chem Soc, 2005, 127(16): 5774-5775. doi:10.1021/ja050987ahttp://dx.doi.org/10.1021/ja050987a
Niu H, Dong J Y. Polymer, 2007, 48(6): 1533-1540. doi:10.1016/j.polymer.2007.01.067http://dx.doi.org/10.1016/j.polymer.2007.01.067
Annunziata L, Pragliola S, Pappalardo D, Tedesco D, Pellecchia C. Macromolecules, 2011, 44(7): 1934-1941. doi:10.1021/ma1028455http://dx.doi.org/10.1021/ma1028455
Shang Ruining(商睿凝), Pan Li(潘莉), Li Yuesheng(李悦生). Acta Polymerica Sinica(高分子学报), 2019, (11): 1187-1195. doi:10.11777/j.issn1000-3304.2019.19081http://dx.doi.org/10.11777/j.issn1000-3304.2019.19081
Wang X Y, Long Y Y, Wang Y X, Li Y S. J Polym Sci, Part B: Polym Chem, 2014, 52(23): 3421-3428. doi:10.1002/pola.27409http://dx.doi.org/10.1002/pola.27409
Li Z X, Shi S W, Yang F, Cao D F, Zhang K Y, Wang B, Ma Z, Pan L, Li Y S. ACS Omega, 2020, 5(22): 13148-13157. doi:10.1021/acsomega.0c01165http://dx.doi.org/10.1021/acsomega.0c01165
Li Y L, Song D P, Pan L, Ma Z, Li Y S. Polym Chem, 2019, 10(46): 6368-6378. doi:10.1039/c9py01225ghttp://dx.doi.org/10.1039/c9py01225g
Wang B, Shang R N, Ma Z, Pan L, Li Y S. Polymer, 2017, 116: 105-112. doi:10.1016/j.polymer.2017.03.067http://dx.doi.org/10.1016/j.polymer.2017.03.067
Pan L, Zhang K Y, Nishiura M, Hou Z M. Angew Chem Int Ed, 2011, 50(50): 12012-12015. doi:10.1002/anie.201104011http://dx.doi.org/10.1002/anie.201104011
Cueny E S, Johnson H C, Anding B J, Landis C R. J Am Chem Soc, 2017, 139(34): 11903-11912. doi:10.1021/jacs.7b05729http://dx.doi.org/10.1021/jacs.7b05729
Resconi L, Cavallo L, Fait A, Piemontesi F. Chem Rev, 2000, 100(4): 1253-1345. doi:10.1021/cr9804691http://dx.doi.org/10.1021/cr9804691
Fang Zhanqing(方展清), Zhang Yulan(张玉兰). Polymer Communications(高分子通讯), 1982, (3): 172-177
Ester L M, Rafael V G, Alicia C. Eur Polym J, 2017, 90: 183-194
0
Views
128
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution