浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
Li Pan, E-mail: lilypan@tju.edu.cn
Published:20 December 2022,
Published Online:06 September 2022,
Received:25 April 2022,
Accepted:11 May 2022
移动端阅览
马松峰,刘超,孙晓伟等.咔唑基团功能化全同聚丙烯抗紫外老化性能研究[J].高分子学报,2022,53(12):1523-1533.
Ma Song-feng,Liu Chao,Sun Xiao-wei,et al.UV Aging of Isotactic Polypropylene Functionalized with Carbazole Groups[J].ACTA POLYMERICA SINICA,2022,53(12):1523-1533.
马松峰,刘超,孙晓伟等.咔唑基团功能化全同聚丙烯抗紫外老化性能研究[J].高分子学报,2022,53(12):1523-1533. DOI: 10.11777/j.issn1000-3304.2022.22142.
Ma Song-feng,Liu Chao,Sun Xiao-wei,et al.UV Aging of Isotactic Polypropylene Functionalized with Carbazole Groups[J].ACTA POLYMERICA SINICA,2022,53(12):1523-1533. DOI: 10.11777/j.issn1000-3304.2022.22142.
通过丙烯和含咔唑基团的
α
-烯烃的直接共聚,向全同聚丙烯中引入了具有可吸收紫外光的咔唑基团. 咔唑基团具有吸收紫外光及365 nm紫外光下具有明显的蓝紫色发光特性,可能赋予材料抗光氧老化性能. 利用核磁共振波谱和红外等对丙烯/11-咔唑-1-十一碳烯(P-C)共聚物结构进行了明确表征,共聚物中咔唑基团的含量分别为0.45 mol%~1.67 mol%. 对不同咔唑基团含量的P-C样品进行了紫外老化处理,并对其抗紫外老化性能进行了研究. 在相同老化条件下,当丙烯均聚物(PP)样品表面出现大而深的裂纹时,P-C样品表面没有裂纹或仅出现了细微的裂纹. 与
i
PP样品相比,老化后的P-C样品拉伸性能、热性能等在老化过程中得到了良好保持,降解反应受到明显抑制. 综上所述,含有共轭结构的咔唑基团的引入能有效增强聚丙烯的抗紫外老化性能.
Carbazole group functionalized isotactic polypropylene (P-C) samples were prepared
via
direct copolymerization of propylene and
α
-olefin bearing terminal carbazole group.The carbazole group could absorb ultraviolet light and exibibit blue-purple luminescence under 365 nm ultraviolet light
which may endows the material with anti-photooxygen aging property.
13
C-NMR data showed that the propylene/11-carbazole-1-undecene copolymer(P-Cs) have high tacticity. In order to maintain the excellent mechanical properties of isotactic polypropylene
the incorporation of comonomer was controlled at 0.45 mol%-1.67 mol%. The P-C samples with different carbazole group contents were studied
via
UV aging and the UV-oxidative stability tests. After the same aging time
when large and deep cracks were observed on the surface of the
i
PP sample
only the P-C1 sample with the lowest carbazole group content showed small cracks on the surface
while the P-C2 and P-C3 samples with higher content of carbazole groups had no cracks. Tensile tests revealed that losses in tensile properties of the P-C samples were far less compared to that of the pure
i
PP sample. At 120 h
the mechanical properties of the
i
PP samples were completely lost. Under the same conditions
the tensile strength of the P-C1 samples remained above 98%
and the tensile strengths of the P-C2 and P-C3 samples were significantly improved. The DSC data showed that the melting temperature (
T
m
) of the
i
PP samples decreased by 7 ℃ after UV irradiation
while the
T
m
of the samples in the P-C group decreased by at most 2 ℃. which indicated that the introduction of carbazole groups could stabilize the thermal properties of the samples under UV irradiation. GP
C test results showed that the thermal properties and molecular weghts of polypropylenes with carbazole group were well maintained after the UV aging process
and that the degradation reaction has been significantly inhibited. In conclusion
the introduction of carbazole groups could effectively enhance the UV-oxidative stability of polypropylene.
2
全同聚丙烯咔唑基团配位聚合抗紫外老化
Isotactic polypropyleneCarbazoleCopolymerizationUV aging
Gao Huan(高欢), Shao Pingjun(邵平均), Li Bang(李邦), Pan Li(潘莉). Acta Polymerica Sinica(高分子学报), 2021, 52(11): 1498-1505. doi:10.11777/j.issn1000-3304.2021.21125http://dx.doi.org/10.11777/j.issn1000-3304.2021.21125
Yang S G, Zhang Z C, Zhang L Q, Zhou D, Wang Y, Lei J, Li L B, Li Z M. Polym Chem, 2015, 6(25): 4588-4596. doi:10.1039/c5py00339chttp://dx.doi.org/10.1039/c5py00339c
de Rosa C, Auriemma F. J Am Chem Soc, 2006, 128(34): 11024-11025. doi:10.1021/ja063464rhttp://dx.doi.org/10.1021/ja063464r
Wang X Y, Wang Y X, Li Y S, Pan L. Macromolecules, 2015, 48(7): 1991-1998. doi:10.1021/acs.macromol.5b00128http://dx.doi.org/10.1021/acs.macromol.5b00128
Zhang G, Li H X, Antensteiner M, Chung T C M. Macromolecules, 2015, 48(9): 2925-2934. doi:10.1021/acs.macromol.5b00439http://dx.doi.org/10.1021/acs.macromol.5b00439
Snegirev A Y, Talalov V A, Stepanov V V, Korobeinichev O P, Gerasimov I E, Shmakov A G. Polym Degrad Stab, 2017, 137: 151-161. doi:10.1016/j.polymdegradstab.2017.01.008http://dx.doi.org/10.1016/j.polymdegradstab.2017.01.008
Li Y C, Xue B Q, Qi P, Gu X Y, Sun J, Li H F, Lin J Y, Zhang S. Composites Part B: Eng, 2022, 234: 109666. doi:10.1016/j.compositesb.2022.109666http://dx.doi.org/10.1016/j.compositesb.2022.109666
Liu Y, Gao Y, Zhang Z, Wang Q. Chemosphere, 2021, 277: 130370. doi:10.1016/j.chemosphere.2021.130370http://dx.doi.org/10.1016/j.chemosphere.2021.130370
An Z, Xu Z, Ye Y, Yang R. Anal Chim Acta, 2021, 1169: 338632. doi:10.1016/j.aca.2021.338632http://dx.doi.org/10.1016/j.aca.2021.338632
Chammingkwan P, Yamaguchi F, Terano M, Taniike T. Polym Degrad Stab, 2017, 143: 253-258. doi:10.1016/j.polymdegradstab.2017.07.024http://dx.doi.org/10.1016/j.polymdegradstab.2017.07.024
Osawa Z, Kato M, Terano M. Macromol Rapid Commun, 1997, 18(8): 667-671. doi:10.1002/marc.1997.030180807http://dx.doi.org/10.1002/marc.1997.030180807
Hatanaka T, Mori H, Terano M. Polym Degrad Stab, 1999, 65(2): 271-278. doi:10.1016/s0141-3910(99)00016-6http://dx.doi.org/10.1016/s0141-3910(99)00016-6
Ainali N M, Bikiaris D N, Lambropoulou D A. J Anal Appl Pyrolysis, 2021, 158: 105207. doi:10.1016/j.jaap.2021.105207http://dx.doi.org/10.1016/j.jaap.2021.105207
Zhang Z, Tian R, Zhang P, Lu C, Duan X. ACS Cent Sci, 2020, 6(5): 771-778. doi:10.1021/acscentsci.0c00133http://dx.doi.org/10.1021/acscentsci.0c00133
Liu S, Yang J, Liu Q, Huang Y, Kong M, Yang Q, Li G. Chem Eng J, 2019, 363: 1-12. doi:10.1016/j.cej.2019.01.118http://dx.doi.org/10.1016/j.cej.2019.01.118
Neiman M B. Russ Chem Rev, 1964, 33: 15-18. doi:10.1070/rc1964v033n01abeh001364http://dx.doi.org/10.1070/rc1964v033n01abeh001364
Lucarini M, Pedulli G F, Motyakin M V, Schlick S. Prog Polym Sci, 2003, 28(2): 331-340
Schwarz T, Steniner G, Koppelmann J. J Appl Polym Sci, 1989, 38(1): 1-7. doi:10.1002/app.1989.070380101http://dx.doi.org/10.1002/app.1989.070380101
Gijsman P, Gitton M. Polym Degrad Stab, 1999, 66(3): 365-371. doi:10.1016/s0141-3910(99)00088-9http://dx.doi.org/10.1016/s0141-3910(99)00088-9
Allen N S, Mckellar J F. J Appl Polym Sci, 1978, 22(11): 3277-3282. doi:10.1002/app.1978.070221121http://dx.doi.org/10.1002/app.1978.070221121
Wu X, Liu P, Shi H, Wang H, Huang H, Shi Y, Gao S. Water Res, 2021, 188: 116456. doi:10.1016/j.watres.2020.116456http://dx.doi.org/10.1016/j.watres.2020.116456
Wang X, Wang B, Song L, Wen P, Tang G, Hu Y. Polym Degrad Stab, 2013, 98(9): 1945-1951. doi:10.1016/j.polymdegradstab.2013.05.019http://dx.doi.org/10.1016/j.polymdegradstab.2013.05.019
Zannucci J S, Lappin G R. Macromolecules, 1974, 7(3): 393-394. doi:10.1021/ma60039a023http://dx.doi.org/10.1021/ma60039a023
Wang X Y, Li Y G, Mu H L, Pan L, Li Y S. Polym Chem, 2015, 6(7): 1150-1158. doi:10.1039/c4py01350fhttp://dx.doi.org/10.1039/c4py01350f
Williamson J B, Na C G, Johnson R R, Daniel W F M, Alexanian E J, Leibfarth F A. J Am Chem Soc, 2019, 141(32): 12815-12823. doi:10.1021/jacs.9b05799http://dx.doi.org/10.1021/jacs.9b05799
Meng Qingqing(孟晴晴), Wang Bin(王彬), Pan Li(潘莉), Li Yuesheng(李悦生), Ma Zhe(马哲). Acta Polymerica Sinica(高分子学报), 2017, (11): 1762-1772. doi:10.11777/j.issn1000-3304.2017.17028http://dx.doi.org/10.11777/j.issn1000-3304.2017.17028
Zhu W, Zhang G, Liu B, Chung T C M. Polymer, 2018, 146: 101-108. doi:10.1016/j.polymer.2018.05.019http://dx.doi.org/10.1016/j.polymer.2018.05.019
Mizutani Y, Kusumoto K, Hisano S. Bull Chem Soc Jpn, 1971, 44(4): 1134-1136. doi:10.1246/bcsj.44.1134http://dx.doi.org/10.1246/bcsj.44.1134
Ma R, Zhao M, Mo Y, Tang P, Feng Y, Li D. Appl Clay Sci, 2019, 180: 105196. doi:10.1016/j.clay.2019.105196http://dx.doi.org/10.1016/j.clay.2019.105196
Zhang Q, Zhang Q, Leroux F, Tang P, Li D, Feng Y. Polym Degrad Stab, 2018, 154: 55-61. doi:10.1016/j.polymdegradstab.2018.05.027http://dx.doi.org/10.1016/j.polymdegradstab.2018.05.027
Kaci M, Touati N, Setnescu R, Zaharescu T, Setnescu T, Jipa S. Macromol Mater Eng, 2005, 290(8): 802-808. doi:10.1002/mame.200500096http://dx.doi.org/10.1002/mame.200500096
Sharma Y N, Naqvi M K, Gawande P S, Bhardwaj I S. J Appl Polym Sci, 1982, 27(7): 2605-2613. doi:10.1002/app.1982.070270729http://dx.doi.org/10.1002/app.1982.070270729
Zhang Y, Li H Y, Li M G, Liu W W, Li Q, Hu Y L. Macromol Chem Phys, 2019, 221(3): 1900410. doi:10.1002/macp.201900410http://dx.doi.org/10.1002/macp.201900410
Zhang G, Nam C, Chung T C M, Petersson L, Hillborg H. Macromolecules, 2017, 50(18): 7041-7051. doi:10.1021/acs.macromol.7b01235http://dx.doi.org/10.1021/acs.macromol.7b01235
Chung T C M. Macromolecules, 2019, 52(15): 5618-5637. doi:10.1021/acs.macromol.9b00855http://dx.doi.org/10.1021/acs.macromol.9b00855
Lu Z, Wang H, Li S, Dai S. Polym Chem, 2021, 12(38): 5495-5504. doi:10.1039/d1py01064fhttp://dx.doi.org/10.1039/d1py01064f
Shang R N, Gao H, Luo F L, Li Y L, Wang B, Ma Z, Pan L, Li Y S. Macromolecules, 2019, 52(23): 9280-9290. doi:10.1021/acs.macromol.9b00757http://dx.doi.org/10.1021/acs.macromol.9b00757
Shang Ruining(商睿凝), Gao Huan(高欢), Li Yulian(李玉莲), Wang Bin(王彬), Ma Zhe(马哲), Pan Li(潘莉), Li Yuesheng(李悦生). Acta Polymerica Sinica(高分子学报), 2019, 50(11): 1187-1195. doi:10.11777/j.issn1000-3304.2019.19081http://dx.doi.org/10.11777/j.issn1000-3304.2019.19081
Resconi L, Cavallo L, Fait A, Piemontesi F. Chem Rev, 2000, 100(4): 1253-1346. doi:10.1021/cr9804691http://dx.doi.org/10.1021/cr9804691
Tian H, Zhang S, Ge X, Xiang A. J Therm Anal Calorim, 2017, 128(3): 1495-1504. doi:10.1007/s10973-016-5996-3http://dx.doi.org/10.1007/s10973-016-5996-3
0
Views
81
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution