浏览全部资源
扫码关注微信
1.中国科学院化学研究所 中国科学院胶体、界面与化学热力学重点实验室 北京 100190
2.中国科学院大学 北京 100049
Published:20 October 2022,
Published Online:18 July 2022,
Received:28 April 2022,
Accepted:24 May 2022
移动端阅览
袁伟,董原辰.框架诱导组装策略研究进展[J].高分子学报,2022,53(10):1204-1216.
Yuan Wei,Dong Yuan-chen.Recent Advancements in Frame-guided Assembly[J].ACTA POLYMERICA SINICA,2022,53(10):1204-1216.
袁伟,董原辰.框架诱导组装策略研究进展[J].高分子学报,2022,53(10):1204-1216. DOI: 10.11777/j.issn1000-3304.2022.22154.
Yuan Wei,Dong Yuan-chen.Recent Advancements in Frame-guided Assembly[J].ACTA POLYMERICA SINICA,2022,53(10):1204-1216. DOI: 10.11777/j.issn1000-3304.2022.22154.
近年来,两亲分子自组装在生物医药和材料科学领域受到愈加广泛的关注和研究. 为了实现特定大小和形态的功能纳米结构的制备,研究者们先后发展了多种稳健的构筑方法. 框架诱导组装策略作为一种新兴的有效构筑策略,在精确形貌和尺寸可控的三维纳米囊泡和二维纳米膜方面都取得了一系列重要的研究成果. 本文总结并评了述了框架诱导组装策略近十年来的重要研究进展,并展望了该策略在未来存在的挑战和应用前景.
Self-assembly of amphiphiles has attracted more and more attention in the fields of biomedicine and materials science during the last
decade. For preparing functional nanostructures with specific size and morphology
researchers have developed a variety of robust construction methods
including film hydration
co-solvent
dialysis
microfluidic technologies as well as well frame-guided assembly method
etc
. Since the traditional methods have already been well-summarized in detail in many references
therefore
only the construction mechanism and features of these strategies will be addressed here. As a new and effective construction strategy
frame-induced assembly has achieved a series of important achievements in fabrication of three dimensional nanovesicles and two dimensional nanomembranes with precise control on their morphology and size. Based on this novel method
various scaffolds and leading hydrophobic groups have been proven adaptable to form customized nanostructures. In this review
the important research progress of frame-induced assembly strategy in recent ten years will be summarized and evaluated
and the challenges and application prospects of this strategy in the future will be also forecasted.
两亲分子自组装组装方法框架诱导组装
AmphiphilesSelf-assemblyConstruction methodsFrame-guided assembly
Blokzijl W, Engberts J B F N. Angew Chem Int Ed, 1993, 32(11): 1545-1579. doi:10.1002/anie.199315451http://dx.doi.org/10.1002/anie.199315451
Chandler D. Nature, 2005, 437(7059): 640-647. doi:10.1038/nature04162http://dx.doi.org/10.1038/nature04162
Sikder A, Ghosh S. Mater Chem Front, 2019, 3(12): 2602-2616. doi:10.1039/c9qm00473dhttp://dx.doi.org/10.1039/c9qm00473d
Albert S K, Golla M, Krishnan N, Perumal D, Varghese R. Acc Chem Res, 2020, 53(11): 2668-2679. doi:10.1021/acs.accounts.0c00492http://dx.doi.org/10.1021/acs.accounts.0c00492
Zhang X, Wang C. Chem Soc Rev, 2011, 40(1): 94-101. doi:10.1039/b919678chttp://dx.doi.org/10.1039/b919678c
Jie K, Zhou Y, Yao Y, Huang F. Chem Soc Rev, 2015, 44(11): 3568-3587. doi:10.1039/c4cs00390jhttp://dx.doi.org/10.1039/c4cs00390j
Tanford C. J Phys Chem, 1972, 76(21): 3020-3024. doi:10.1021/j100665a018http://dx.doi.org/10.1021/j100665a018
Hu Q, Bai L, Zhu Z, Su Z, Bai P, Tang M, Dou C, Yan J, Tong R, Zhang W, Chen L, Cai L. Chinese Chem Lett, 2020, 31(3): 915-918. doi:10.1016/j.cclet.2020.01.008http://dx.doi.org/10.1016/j.cclet.2020.01.008
Menger F M, Angelova M I. Acc Chem Res, 1998, 31(12): 789-797. doi:10.1021/ar970103vhttp://dx.doi.org/10.1021/ar970103v
Qin Y, Guo Q, Wu S, Huang C, Zhang Z, Zhang L, Zhang L, Zhu D. Chinese Chem Lett, 2020, 31(12): 3121-3126. doi:10.1016/j.cclet.2020.06.023http://dx.doi.org/10.1016/j.cclet.2020.06.023
Liu K, Yao Y, Liu Y, Wang C, Li Z, Zhang X. Langmuir, 2012, 28(29): 10697-10702. doi:10.1021/la3018437http://dx.doi.org/10.1021/la3018437
Kim Y, Li W, Shin S, Lee M. Acc Chem Res, 2013, 46(12): 2888-2897. doi:10.1021/ar400027chttp://dx.doi.org/10.1021/ar400027c
Danino D, Talmon Y, Levy H, Beinert G, Zana R. Science, 1995, 269: 1420-1421. doi:10.1126/science.269.5229.1420http://dx.doi.org/10.1126/science.269.5229.1420
Barclay T G, Constantopoulos K, Matisons J. Chem Rev, 2014, 114(20): 10217-10291. doi:10.1021/cr400085mhttp://dx.doi.org/10.1021/cr400085m
Dong Y, Sun Y, Wang L, Wang D, Zhou T, Yang Z, Chen Z, Wang Q, Fan Q, Liu D. Angew Chem Int Ed, 2014, 53(10): 2607-2610. doi:10.1002/anie.201310715http://dx.doi.org/10.1002/anie.201310715
Dong Y, Liu D. Chem Eur J, 2015, 21(50): 18018-18023. doi:10.1002/chem.201501849http://dx.doi.org/10.1002/chem.201501849
Yuan W, Piao J, Dong Y. Mater Chem Front, 2021, 5(14): 5233-5246. doi:10.1039/d1qm00501dhttp://dx.doi.org/10.1039/d1qm00501d
Rideau E, Dimova R, Schwille P, Wurm F R, Landfester K. Chem Soc Rev, 2018, 47(23): 8572-8610. doi:10.1039/c8cs00162fhttp://dx.doi.org/10.1039/c8cs00162f
Kashapov R, Gaynanova G, Gabdrakhmanov D, Kuznetsov D, Pavlov R, Petrov K. Int J Mol Sci, 2020, 21(18): 6961. doi:10.3390/ijms21186961http://dx.doi.org/10.3390/ijms21186961
Piao J, Yuan W, Dong Y. Macromol Biosci, 2021, 21(5): e2000440
Kale T S, Klaikherd A, Popere B, Thayumanavan S. Langmuir, 2009, 25(17): 9660-9670. doi:10.1021/la900734dhttp://dx.doi.org/10.1021/la900734d
Li W, Zhang Y, Wang Y, Ma Y, Wang D, Li H,Ye X, Yin F, Li Z. Chinese Chem Lett, 2021, 32(4): 1571-1574. doi:10.1016/j.cclet.2020.09.054http://dx.doi.org/10.1016/j.cclet.2020.09.054
Reeves J P, Dowben R M. J Cell Physiol, 1969, 73(1): 49-60. doi:10.1002/jcp.1040730108http://dx.doi.org/10.1002/jcp.1040730108
Grimaldi N, Andrade F, Segovia N, Ferrer-Tasies L, Sala S, Veciana J, Ventosa N. Chem Soc Rev, 2016, 45(23): 6520-6545. doi:10.1039/c6cs00409ahttp://dx.doi.org/10.1039/c6cs00409a
Criado M, Keller B U. Febs Lett, 1987, 224(1): 172-176. doi:10.1016/0014-5793(87)80442-8http://dx.doi.org/10.1016/0014-5793(87)80442-8
Lasic D D. Biochem J, 1988, 256(1): 1-11. doi:10.1042/bj2560001http://dx.doi.org/10.1042/bj2560001
Olson F, Hunt C A, Szoka F C, Vail W J, Papahadjopoulos D. Biochim Biophys Acta Biomembr, 1979, 557(1): 9-23. doi:10.1016/0005-2736(79)90085-3http://dx.doi.org/10.1016/0005-2736(79)90085-3
Angelova M I, Dimitrov D S. Faraday Discuss Chem Soc, 1986, 81: 303-311. doi:10.1039/dc9868100303http://dx.doi.org/10.1039/dc9868100303
Costa A P, Xu X, Burgess D J. Pharm Res, 2014, 31(1): 97-103. doi:10.1007/s11095-013-1135-zhttp://dx.doi.org/10.1007/s11095-013-1135-z
Zhang L F, Eisenberg A. J Am Chem Soc, 1996, 118(13): 3168-3181. doi:10.1021/ja953709shttp://dx.doi.org/10.1021/ja953709s
Lang C, LaNasa J A, Utomo N, Xu Y, Nelson M J, Song W, Hickner M A, Colby R H, Kumar M, Hickey R J. Nat Commun, 2019, 10(1): 3855. doi:10.1038/s41467-019-11804-7http://dx.doi.org/10.1038/s41467-019-11804-7
Wang L, Feng Y, Yang Z, He Y M, Fan Q H, Liu D. Chem Commun, 2012, 48(31): 3715-3717. doi:10.1039/c2cc30776fhttp://dx.doi.org/10.1039/c2cc30776f
de Leo V, Catucci L, Falqui A, Marotta R, Striccoli M, Agostiano A, Comparelli R, Milano F. Langmuir, 2014, 30(6): 1599-1608. doi:10.1021/la404160bhttp://dx.doi.org/10.1021/la404160b
Torchilin V P, Trubetskoy V S, Whiteman K R, Caliceti P, Ferruti P, Veronese F M. J Pharm Sci, 1995, 84(9): 1049-1053. doi:10.1002/jps.2600840904http://dx.doi.org/10.1002/jps.2600840904
Jahn A, Vreeland W N, Gaitan M, Locascio L E. J Am Chem Soc, 2004, 126(9): 2674-2675. doi:10.1021/ja0318030http://dx.doi.org/10.1021/ja0318030
Tan Y C, Hettiarachchi K, Siu M, Pan Y R, Lee A P. J Am Chem Soc, 2006, 128(17): 5656-5658. doi:10.1021/ja056641hhttp://dx.doi.org/10.1021/ja056641h
Zheng Y, Wu Z, Lin L, Zheng X, Hou Y, Lin J M. Lab Chip, 2021, 21(22): 4311-4329. doi:10.1039/d1lc00618ehttp://dx.doi.org/10.1039/d1lc00618e
Lux S E Ⅳ. Blood, 2016, 127(2): 187-199. doi:10.1182/blood-2014-12-512772http://dx.doi.org/10.1182/blood-2014-12-512772
Dong Y, Yang Y R, Zhang Y, Wang D, Wei X, Banerjee S, Liu, Y. Yang Z, Yan H, Liu D. Angew Chem Int Ed, 2017, 56(6): 1586-1589. doi:10.1002/anie.201610133http://dx.doi.org/10.1002/anie.201610133
Zhao Z, Chen C, Dong Y, Yang Z, Fan Q H, Liu D. Angew Chem Int Ed, 2014, 53(49): 13468-13470. doi:10.1002/anie.201408231http://dx.doi.org/10.1002/anie.201408231
Zhang Y, Bao D, Wang S, Dong Y, Wu F, Li H, Liu D. Small, 2018, 14(8): 1703259. doi:10.1002/smll.201703259http://dx.doi.org/10.1002/smll.201703259
Bian B, Zhang Y Y, Dong Y C, Wu F, Wang C, Wang S, Xu Y, Liu D. Sci China Chem, 2018, 61(12): 1568-1571. doi:10.1007/s11426-018-9309-5http://dx.doi.org/10.1007/s11426-018-9309-5
Wang S, Zhang Y, Dong Y, Liu D. Polymer, 2019, 175: 146-151. doi:10.1016/j.polymer.2019.04.038http://dx.doi.org/10.1016/j.polymer.2019.04.038
Perrault S D, Shih W M. ACS Nano, 2014, 8(5): 5132-5140. doi:10.1021/nn5011914http://dx.doi.org/10.1021/nn5011914
Wang C, Zhang Y, Shao Y, Tian X, Piao J, Dong Y, Liu D. Giant, 2020, 1: 100006. doi:10.1016/j.giant.2020.100006http://dx.doi.org/10.1016/j.giant.2020.100006
Wang C, Piao J, Li Y, Tian X, Dong Y, Liu D. Angew Chem Int Ed, 2020, 59(35): 15176-15180. doi:10.1002/anie.202005334http://dx.doi.org/10.1002/anie.202005334
Yang Y, Wang J, Shigematsu H, Xu W, Shih W M, Rothman J E, Lin C. Nat Chem, 2016, 8(5): 476-483. doi:10.1038/nchem.2472http://dx.doi.org/10.1038/nchem.2472
Zhang Z, Yang Y, Pincet F, Llaguno M C, Lin C. Nat Chem, 2017, 9(7): 653-659. doi:10.1038/nchem.2802http://dx.doi.org/10.1038/nchem.2802
Zhou C, Zhang Y, Dong Y, Wu F, Wang D, Xin L, Liu D. Adv Mater, 2016, 28(44): 9819-9823. doi:10.1002/adma.201603210http://dx.doi.org/10.1002/adma.201603210
Wang D, Zhang G, Zhang Y, Xin L, Dong Y, Liu Y, Liu D. Small, 2017, 13(43): 1700594. doi:10.1002/smll.201700594http://dx.doi.org/10.1002/smll.201700594
Iric K, Subramanian M, Oertel J, Agarwal N P, Matthies M, Periole X, Sakmar T P, Huber T, Fahmy K, Schmidt T L. Nanoscale, 2018, 10(39): 18463-18467. doi:10.1039/c8nr06505ehttp://dx.doi.org/10.1039/c8nr06505e
Zhao Z, Zhang M, Hogle J M, Shih W M, Wagner G, Nasr M L. J Am Chem Soc, 2018, 140(34): 10639-10643. doi:10.1021/jacs.8b04638http://dx.doi.org/10.1021/jacs.8b04638
Maingi V, Rothemund P W K. ACS Nano, 2021, 15(1): 751-764. doi:10.1021/acsnano.0c07128http://dx.doi.org/10.1021/acsnano.0c07128
0
Views
124
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution