浏览全部资源
扫码关注微信
中国科学院化学研究所 北京 100190
Published:20 November 2022,
Published Online:26 August 2022,
Received:29 April 2022,
Accepted:31 May 2022
移动端阅览
范庆瑞,毛俊强,王健君.调控分子组装过程的研究进展[J].高分子学报,2022,53(11):1316-1323.
Fan Qing-rui,Mao Jun-qiang,Wang Jian-jun.Recent Research Progress on Controlling the Assembly Process via Solvent Recrystallization[J].ACTA POLYMERICA SINICA,2022,53(11):1316-1323.
范庆瑞,毛俊强,王健君.调控分子组装过程的研究进展[J].高分子学报,2022,53(11):1316-1323. DOI: 10.11777/j.issn1000-3304.2022.22156.
Fan Qing-rui,Mao Jun-qiang,Wang Jian-jun.Recent Research Progress on Controlling the Assembly Process via Solvent Recrystallization[J].ACTA POLYMERICA SINICA,2022,53(11):1316-1323. DOI: 10.11777/j.issn1000-3304.2022.22156.
生命系统通过精确地调控组装过程,根据实际需求将有限的原料组装成具有不同聚集结构的材料,极大地丰富了材料的形式与功能. 对分子组装的热力学环境与动力学聚集速率进行独立且精确地调控,是组装得到各种功能材料的关键. 本文简单介绍了本课题组利用溶剂重结晶策略,通过控制重结晶的温度及温度变化率在精确控制溶剂分子组装过程方面的研究进展.
Living systems have the capacity to effectively regulate the assembly of molecules into natural materials with outstanding functionalities
via
controlling the assembly process. Inspired by nature
great efforts have recently been focused on controlling the assembly process
n
ot only enriching materials formats
but also assisting further understand the complex assembly mechanisms. In this review
we firstly introduce the current considerable progresses
via
tuning the assembly process
as well as illustrating that the reported strategies are insufficient to regulate precisely the assembly process because it is difficult to independently control the thermodynamics of assembly and molecular assembly rates. Then we summarize our recent research progress on precise controlling the molecular assembly process
via
a novel method
solvent recrystallization. The two key parameters
recrystallization temperature and temperature change rate
can independently control the assembly thermodynamic environment and molecular aggregation rates. Thus
the same assembly units including small molecules and polymers can be assembled into desired materials with controllable sizes and adjustable molecular packings.
分子自组装溶剂重结晶组装过程
Molecular self-assemblySolvent recrystallizationAssembly process
Whitesides G M, Grzybowski B. Science, 2002, 295(5564): 2418-2421. doi:10.1126/science.1070821http://dx.doi.org/10.1126/science.1070821
Liu J, Zhu C, Liu K, Jiang Y, Song Y, Francisco J S, Zeng X C, Wang J. Proc Natl Acad Sci USA, 2017, 114 (43): 11285-11290. doi:10.1073/pnas.1712829114http://dx.doi.org/10.1073/pnas.1712829114
Jissy A K, Datta A. J Phys Chem Lett, 2013, 4(6): 1018-1022. doi:10.1021/jz400263yhttp://dx.doi.org/10.1021/jz400263y
Fang H, Geng S, Hao M, Chen Q, Liu M, Liu C, Tian Z, Wang C, Takebe T, Guan J, Chen Y, Guo Z, He W, Diao J. Nat Commun, 2021, 12(1): 109. doi:10.1038/s41467-020-20309-7http://dx.doi.org/10.1038/s41467-020-20309-7
Gautieri A, Vesentini S, Redaelli A, Buehler M J. Nano Lett, 2011, 11(2): 757-766. doi:10.1021/nl103943uhttp://dx.doi.org/10.1021/nl103943u
Grzybowski B A, Wilmer C E, Kim J, Browne K P, Bishop K J. Soft Matter, 2009, 5(6): 1110-1128. doi:10.1039/b819321phttp://dx.doi.org/10.1039/b819321p
Chichak K S, Cantrill S J, Pease A R, Chiu S H, Cave G W, Atwood J L, Stoddart J F. Science, 2004, 304(5675): 1308-1312. doi:10.1126/science.1096914http://dx.doi.org/10.1126/science.1096914
Zhang Y W, Seeman N C. J Am Chem Soc, 1994, 116(5): 1661-1669. doi:10.1021/ja00084a006http://dx.doi.org/10.1021/ja00084a006
Seeman N C. J Theor Biol, 1982, 99(2): 237-247. doi:10.1016/0022-5193(82)90002-9http://dx.doi.org/10.1016/0022-5193(82)90002-9
Yan D, Zhou Y, Hou J. Science, 2004, 303(5654): 65-67. doi:10.1126/science.1090763http://dx.doi.org/10.1126/science.1090763
Su M, Song Y. Chem Rev, 2021, 122(5): 5144-5164. doi:10.1021/acs.chemrev.1c00303http://dx.doi.org/10.1021/acs.chemrev.1c00303
Kim E, Xia Y N, Whitesides G M. Nature, 1995, 376(6541): 581-584. doi:10.1038/376581a0http://dx.doi.org/10.1038/376581a0
Jiang X, Gao H, Zhang X, Pang J, Li Y, Li K, Wu Y, Li S, Zhu J, Wei Y, Jiang L. Nat Commun, 2018, 9(1): 3799. doi:10.1038/s41467-018-06101-8http://dx.doi.org/10.1038/s41467-018-06101-8
Su B, Wang S, Ma J, Song Y, Jiang L. Adv Funct Mater, 2011, 21(17): 3297-3307. doi:10.1002/adfm.201100603http://dx.doi.org/10.1002/adfm.201100603
Hovden R, Wolf S E, Holtz M E, Marin F, Muller D A, Estroff L A. Nat Commun, 2015, 6: 10097. doi:10.1038/ncomms10097http://dx.doi.org/10.1038/ncomms10097
Saikia J, Pandey G, Sasidharan S, Antony F, Nemade H B, Kumar S, Chaudhary N, Ramakrishnan V. ACS Chem Neurosci, 2019, 10(5): 2250-2262. doi:10.1021/acschemneuro.8b00490http://dx.doi.org/10.1021/acschemneuro.8b00490
Tevis I D, Palmer L C, Herman D J, Murray I P, Stone D A, Stupp S I. J Am Chem Soc, 2011, 133(41): 16486-16494. doi:10.1021/ja204811bhttp://dx.doi.org/10.1021/ja204811b
Mabesoone M F J, Markvoort A J, Banno M, Yamaguchi T, Helmich F, Naito Y, Yashima E, Palmans A, Meijer E. J Am Chem Soc, 2018, 140(25): 7810-7819. doi:10.1021/jacs.8b02388http://dx.doi.org/10.1021/jacs.8b02388
Amstad E, Gopinadhan M, Holtze C, Osuji C O, Brenner M P, Spaepen F, Weitz D A. Science, 2015, 349(6251): 956-960. doi:10.1126/science.aac9582http://dx.doi.org/10.1126/science.aac9582
Sevim S, Sorrenti A, Franco C, Furukawa S, Pane S, deMello A J, Puigmarti-Luis J. Chem Soc Rev, 2018, 47(11): 3788-3803. doi:10.1039/c8cs00025ehttp://dx.doi.org/10.1039/c8cs00025e
Wu S, Zhu C, He Z, Xue H, Fan Q, Song Y, Francisco J S, Zeng X C, Wang J. Nat Commun, 2017, 8: 15154. doi:10.1038/ncomms15154http://dx.doi.org/10.1038/ncomms15154
Fan Q, Gao Y, Zhu C, Liu J, Zhao L, Mao J, Wu S, Xue H, Francisco J, Zeng X, Wang J. Langmuir, 2020, 36(7): 1691-1698. doi:10.1021/acs.langmuir.9b03417http://dx.doi.org/10.1021/acs.langmuir.9b03417
Fan Q, Li L, Xue H, Zhou H, Zhao L, Liu J, Mao J, Wu S, Zhang S, Wu C, Li X, Zhou X, Wang J. Angew Chem Int Ed Engl, 2020, 59: 15141-15146. doi:10.1002/anie.202003922http://dx.doi.org/10.1002/anie.202003922
Zhang C, Zang Y, Gann E, McNeill C R, Zhu X, Di C A, Zhu D. J Am Chem Soc, 2014, 136(46): 16176-16184. doi:10.1021/ja510003yhttp://dx.doi.org/10.1021/ja510003y
Zhang Q, Qu D, Tian H. Adv Opt Mater, 2019, 7(16): 1900033. doi:10.1002/adom.201900033http://dx.doi.org/10.1002/adom.201900033
Zhang Q, Qu D, Feringa B L, Tian H. J Am Chem Soc, 2022, 144(5): 2022-2033. doi:10.1021/jacs.1c10359http://dx.doi.org/10.1021/jacs.1c10359
Zhang Q, Qu D, Tian H, Feringa B L. Matter, 2020, 3(2): 355-370. doi:10.1016/j.matt.2020.05.014http://dx.doi.org/10.1016/j.matt.2020.05.014
An Bang(安邦), Xu Mingcong(徐明聪), Ma Chunhui(马春慧), Luo Sha(罗沙), Li Wei(李伟), Liu Shouxin(刘守新). Acat Polymerica Sinica(高分子学报), 2022, 53(3): 211-226
Park K S, Kwok J J, Kafle P, Diao Y. Chem Mater, 2021, 33(2): 469-498. doi:10.1021/acs.chemmater.0c04152http://dx.doi.org/10.1021/acs.chemmater.0c04152
Hua M, Wu S, Ma Y, Zhao Y, Chen Z, Frenkel I, Strzalka J, Zhou H, Zhu X, He X. Nature, 2021, 590(7847): 594-599. doi:10.1038/s41586-021-03212-zhttp://dx.doi.org/10.1038/s41586-021-03212-z
0
Views
137
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution