浏览全部资源
扫码关注微信
1.超分子结构与材料国家重点实验室 吉林大学化学学院 长春 130012
2.杭州师范大学材料化学与化学工程学院 杭州 311121
Published:20 October 2022,
Published Online:26 July 2022,
Received:30 April 2022,
Accepted:24 May 2022
移动端阅览
李逸佳,田瑞桢,徐家云等.蛋白质超分子聚合物及其应用[J].高分子学报,2022,53(10):1217-1238.
Li Yi-jia,Tian Rui-zhen,Xu Jia-yun,et al.Protein Supramolecular Polymers and Their Applications[J].ACTA POLYMERICA SINICA,2022,53(10):1217-1238.
李逸佳,田瑞桢,徐家云等.蛋白质超分子聚合物及其应用[J].高分子学报,2022,53(10):1217-1238. DOI: 10.11777/j.issn1000-3304.2022.22161.
Li Yi-jia,Tian Rui-zhen,Xu Jia-yun,et al.Protein Supramolecular Polymers and Their Applications[J].ACTA POLYMERICA SINICA,2022,53(10):1217-1238. DOI: 10.11777/j.issn1000-3304.2022.22161.
蛋白质超分子聚合物在生命体的组成和代谢中发挥着重要的作用. 天然蛋白质超分子聚合物高级功能的行使离不开其组装策略和组装结构的独特优势. 近年来,以“自下而上”的方式构建丰富多样功能性的蛋白质超分子聚合物已成为人们所关注的热点之一. 本文介绍了金属配位作用、主客体相互作用、多重氢键相互作用、亲疏水相互作用、
π
-
π
相互作用、受体识别相互作用及静电相互作用等多种构筑蛋白质超分子聚合物的经典策略,并分析讨论了其各自特点. 基于蛋白质超分子聚合物的独特结构与功能优势,综述了其在生物催化、生物载药与释放、构建人工光捕获系统、生物传感及其他多种功能性材料领域的应用,阐明了蛋白质超分子材料的巨大应用潜能和重要意义,并对其制备与应用仍面临的挑战和其未来发展方向进行了展望.
Protein polymers play an important role in biological composition and life activities. Formed through multiple supramolecular interactions
assembly structures of natural supramolecular protein polymers that were preserved in natural selection could satisfy the various advanced life events. To better explore the mysteries of life
in recent years
the construction of protein supramolecular polymers with various and diverse functionalities in a "bottom-up" approach has become one of the hotspots of interest. Flexible construction strategies could be considered as one of the decisive factors for the successful construction of protein supramolecular polymers. In this paper
we introduce some of the most classical constructing strategies of protein supramolecular polymers based on metal coordination
host-guest interactions
multiple hydrogen bond interactions
hydrophobic interactions
π
-
π
interactions and receptor recognition interactions
and their respective characteristics were analyzed and discussed. Due to their good biocompatibility and well-defined structure at the nanoscale
protein polymers act as advanced materials in the biological related fields. Based on the unique structural and functional advantages of protein supramolecular polymers
their applications in biocatalysis
medical diagnosis and treatment
biomimetic light harvesting systems
biosensing and other functional materials were introduced in this paper. The significance of the construction of protein supramolecules and its application potential were also clarified. Finally
the challenges of the preparation and application of protein supramolecular polymers as well as its tendency of future development are prospected.
蛋白质组装超分子作用蛋白质相互作用纳米材料生物功能化
Protein self-assemblySupramolecular interfacesProtein-protein interactionsNano materialsBiofunctionalization
Fouquey C, Lehn J M, Levelut A M. Adv Mater, 1990, 2(5): 254-257. doi:10.1002/adma.19900020506http://dx.doi.org/10.1002/adma.19900020506
Wojtecki R J, Meador M A, Rowan S J. Nat Mater, 2011, 10(1): 14-27. doi:10.1038/nmat2891http://dx.doi.org/10.1038/nmat2891
Yan X, Wang F, Zheng B, Huang F. Chem Soc Rev, 2012, 41(18): 6042-6065. doi:10.1039/c2cs35091bhttp://dx.doi.org/10.1039/c2cs35091b
Liu K, Kang Y, Wang Z, Zhang X. Adv Mater, 2013, 25(39): 5530-5548. doi:10.1002/adma201302015http://dx.doi.org/10.1002/adma201302015
Aida T, Meijer E, Stupp S. Science, 2012, 335(6070): 813-817. doi:10.1126/science.1205962http://dx.doi.org/10.1126/science.1205962
Zhang M, Xu D, Yan X, Chen J, Dong S, Zheng B, Huang F. Angew Chem Int Ed, 2012, 124(28): 7117-7121. doi:10.1002/ange.201203063http://dx.doi.org/10.1002/ange.201203063
Zheng W, Chen L J, Yang G, Sun B, Wang X, Jiang B, Yin G Q. J Am Chem Soc, 2016, 138(14): 4927-4937. doi:10.1021/jacs.6b01089http://dx.doi.org/10.1021/jacs.6b01089
Xu Jiangfei(徐江飞), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2017, (1): 37-49. doi:10.11777/j.issn1000-3304.2017.16262http://dx.doi.org/10.11777/j.issn1000-3304.2017.16262
Chen S G, Yu Y, Zhao X, Ma Y, Jiang X K, Li Z T. J Am Chem Soc, 2011, 133(29): 11124-11127. doi:10.1021/ja205059zhttp://dx.doi.org/10.1021/ja205059z
Li S L, Xiao T, Hu B, Zhang Y, Zhao F, Ji Y, Yu Y, Lin C, Wang L. Chem Commun, 2011, 47(38): 10755-10757. doi:10.1039/c1cc14559bhttp://dx.doi.org/10.1039/c1cc14559b
Xiao T, Feng X, Wang Q, Lin C, Wang L, Pan Y. Chem Commun, 2013, 49(75): 8329-8331. doi:10.1039/c3cc44525ahttp://dx.doi.org/10.1039/c3cc44525a
Liu Y, Yang H, Wang Z, Zhang X. Chem Asian J, 2013, 8(8): 1626-1632. doi:10.1002/asia.201300151http://dx.doi.org/10.1002/asia.201300151
Liu Y, Liu K, Wang Z, Zhang X. Chem Asian J, 2011, 17(36): 9930-9935. doi:10.1002/chem.201101611http://dx.doi.org/10.1002/chem.201101611
Liu Y, Yu Y, Gao J, Wang Z, Zhang X. Angew Chem Int Ed, 2010, 49(37): 6576-6579. doi:10.1002/anie.201002415http://dx.doi.org/10.1002/anie.201002415
Guo S, Song Y, He Y, Hu X Y, Wang L. Angew Chem Int Ed, 2018, 57(12): 3163-3167. doi:10.1002/anie.201800175http://dx.doi.org/10.1002/anie.201800175
Sun G, Qian W, Jiao J, Han T, Shi Y, Hu X Y, Wang L. J Mater Chem A, 2020, 8(19): 9590-9596. doi:10.1039/d0ta03169khttp://dx.doi.org/10.1039/d0ta03169k
Goodsell D S, Olson A J. Annu Rev Biophys Biomol Struct, 2000, 29(1): 105-153. doi:10.1146/annurev.biophys.29.1.105http://dx.doi.org/10.1146/annurev.biophys.29.1.105
Luo Q, Hou C, Bai Y, Wang R, Liu J. Chem Rev, 2016, 116(22): 13571-13632. doi:10.1021/acs.chemrev.6b00228http://dx.doi.org/10.1021/acs.chemrev.6b00228
Jordan M A, Wilson L. Nat Rev Cancer, 2004, 4(4): 253-265. doi:10.1038/nrc1317http://dx.doi.org/10.1038/nrc1317
Baranova E, Fronzes R, Garcia-Pino A, van Gerven N, Papapostolou D, Pehau-Arnaudet G, Pardon E, Steyaert J, Howorka S, Remaut H. Nature, 2012, 487(7405): 119-122. doi:10.1038/nature11155http://dx.doi.org/10.1038/nature11155
Sleytr U B, Messner P, Pum D, Sára M. Mol Microbiol, 1993, 10(5): 911-916. doi:10.1111/j.1365-2958.1993.tb00962.xhttp://dx.doi.org/10.1111/j.1365-2958.1993.tb00962.x
van Dongen S F, Elemans J A, Rowan A E, Nolte R J. Angew Chem Int Ed, 2014, 53(43): 11420-11428. doi:10.1002/anie.201404848http://dx.doi.org/10.1002/anie.201404848
Sára M, Sleytr U B. J Bacteriol, 2000, 182(4): 859-868
Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W. Nature, 2004, 428(6980): 287-292. doi:10.1038/nature02373http://dx.doi.org/10.1038/nature02373
Andersen N H. Protein Structure, Stability, and Folding. Methods in Molecular Biology. Totowa, New Jersey: Humana Press, 2001. 89603-89682. doi:10.1021/ja0152815http://dx.doi.org/10.1021/ja0152815
Prabhu D D, Aratsu K, Kitamoto Y, Ouchi H, Ohba T, Hollamby M J, Shimizu N, Takagi H, Haruki R, Adachi S, Yagai S. Sci Adv, 2018, 4(9): eaat8466. doi:10.1126/sciadv.aat8466http://dx.doi.org/10.1126/sciadv.aat8466
Milroy L G, Grossmann T N, Hennig S, Brunsveld L, Ottmann C. Chem Rev, 2014, 114(9): 4695-4748. doi:10.1021/cr400698chttp://dx.doi.org/10.1021/cr400698c
Smith K H, Tejed-Montes E, Poch M, Mata A. Chem Soc Rev, 2011, 40(9): 4563-4577. doi:10.1039/c1cs15064bhttp://dx.doi.org/10.1039/c1cs15064b
Camara-Campos A, Hunter C A, Tomas S. Proc Natl Acad Sci, 2006, 103(9): 3034-3038. doi:10.1073/pnas.0508071103http://dx.doi.org/10.1073/pnas.0508071103
Bai Y, Luo Q, Liu J. Chem Soc Rev, 2016, 45(10): 2756-2767. doi:10.1039/c6cs00004ehttp://dx.doi.org/10.1039/c6cs00004e
Božič S, Doles T, Gradišar H, Jerala R. Curr Opin Chem Biol, 2013, 17(6): 940-945. doi:10.1016/j.cbpa.2013.10.014http://dx.doi.org/10.1016/j.cbpa.2013.10.014
King N P, Lai Y T. Curr Opin Chem Biol, 2013, 23(4): 632-638. doi:10.1016/j.sbi.2013.06.002http://dx.doi.org/10.1016/j.sbi.2013.06.002
Der B S, Kuhlman B. Curr Opin Chem Biol, 2013, 23(4): 639-646. doi:10.1016/j.sbi.2013.04.010http://dx.doi.org/10.1016/j.sbi.2013.04.010
Spicer C D, Davis B G. Nat Commun, 2014, 5(1): 1-14. doi:10.1038/ncomms5740http://dx.doi.org/10.1038/ncomms5740
Zhang S, Zhang J, Fang W, Zhang Y, Wang Q, Jin J. Nano Lett, 2018, 18(10): 6563-6569. doi:10.1021/acs.nanolett.8b03155http://dx.doi.org/10.1021/acs.nanolett.8b03155
Brodin J D, Ambroggio X, Tang C, Parent K N, Baker T S, Tezcan F A. Nat Chem, 2012, 4(5): 375-382. doi:10.1038/nchem.1290http://dx.doi.org/10.1038/nchem.1290
Subramanian R H, Suzuki Y, Tallorin L, Sahu S, Thompson M, Gianneschi N C, Burkart M D, Tezcan F A. Biochemistry, 2020, 60(13): 1050-1062. doi:10.1021/acs.biochem.0c00363http://dx.doi.org/10.1021/acs.biochem.0c00363
Wang M, Li Q, Li E, Liu J, Zhou J, Huang F. Angew Chem Int Ed, 2021, 60(15): 8115-8120. doi:10.1002/anie.202013701http://dx.doi.org/10.1002/anie.202013701
Ramberg K O, Engilberge S, Skorek T, Crowley P B. J Am Chem Soc, 2021, 143(4): 1896-1907. doi:10.1021/jacs.0c10697http://dx.doi.org/10.1021/jacs.0c10697
Yan X, Xu D, Chi X, Chen J, Dong S, Ding X, Yu Y, Huang F. Adv Mater, 2012, 24(3): 362-369. doi:10.1002/adma.201103220http://dx.doi.org/10.1002/adma.201103220
Heyman A, Levy I, Altman A, Shoseyov O. Nano Lett. 2007, 7(6): 1575-1579. doi:10.1021/nl070450qhttp://dx.doi.org/10.1021/nl070450q
Hou C, Luo Q, Liu J, Miao L, Zhang C, Gao Y, Zhang X, Xu J, Dong Z, Liu J. ACS Nano, 2012, 6(10): 8692-8701. doi:10.1021/nn302270bhttp://dx.doi.org/10.1021/nn302270b
Huang X, Li M, Green D C, Williams D S, Patil A J, Mann S. Nat Commun, 2013, 4(1): 1-9. doi:10.1038/ncomms3239http://dx.doi.org/10.1038/ncomms3239
Sun H, Zhang X, Miao L, Zhao L, Luo Q, Xu J, Liu J. ACS Nano, 2016, 10(1): 421-428. doi:10.1021/acsnano.5b05213http://dx.doi.org/10.1021/acsnano.5b05213
Li X, Qiao S, Zhao L, Liu S, Li F, Yang F, Luo Q, Hou C, Xu J, Liu J. ACS Nano, 2019, 13(2): 1861-1869
Waldron K J, Robinson N J. Nat Rev Microbiol, 2009, 7(1): 25-35. doi:10.1038/nrmicro2057http://dx.doi.org/10.1038/nrmicro2057
Salgado E N, Radford R J, Tezcan F A. Acc Chem Res, 2010, 43(5): 661-672. doi:10.1021/ar900273thttp://dx.doi.org/10.1021/ar900273t
Sontz P A, Bailey J B, Ahn S, Tezcan F A. J Am Chem Soc, 2015, 137(36): 11598-11601. doi:10.1021/jacs.5b07463http://dx.doi.org/10.1021/jacs.5b07463
Suzuki Y, Cardone G, Restrepo D, Zavattieri P D, Baker T S, Tezcan F A. Nature, 2016, 533(7603): 369-373. doi:10.1038/nature17633http://dx.doi.org/10.1038/nature17633
Rittle J, Field M J, Green M T, Tezcan F A. Nat Chem, 2019, 11(5): 434-441. doi:10.1038/s41557-019-0218-9http://dx.doi.org/10.1038/s41557-019-0218-9
Zhang W, Luo Q, Miao L, Hou C, Bai Y, Dong Z, Xu J, Liu J. Nanoscale, 2012, 4(19): 5847-5851. doi:10.1039/c2nr31244ahttp://dx.doi.org/10.1039/c2nr31244a
Bai Y, Luo Q, Zhang W, Miao L, Xu J, Li H, Liu J. J Am Chem Soc, 2013, 135(30): 10966-10969. doi:10.1021/ja405519shttp://dx.doi.org/10.1021/ja405519s
Yang M, Song W J. Nat Commun, 2019, 10(1): 1-11. doi:10.1038/s41467-019-13491-whttp://dx.doi.org/10.1038/s41467-019-13491-w
Biswas S, Kinbara K, Niwa T, Taguchi H, Ishii N, Watanabe S, Miyata K, Kataoka K, Aida T. Nat Chem, 2013, 5(7): 613-620. doi:10.1038/nchem.1681http://dx.doi.org/10.1038/nchem.1681
Kostiainen M A, Hiekkataipale P, Laiho A, Lemieux V, Seitsonen J, Ruokolainen J, Ceci P. Nat Nanotechnol, 2013, 8(1): 52-56. doi:10.1038/nnano.2012.220http://dx.doi.org/10.1038/nnano.2012.220
Heitmann L M, Taylor A B, Hart P J, Urbach A R. J Am Chem Soc, 2006, 128(38): 12574-12581. doi:10.1021/ja064323shttp://dx.doi.org/10.1021/ja064323s
Choi S, Mukhopadhyay R D, Kim Y, Hwang I C, Hwang W, Ghosh S K, Baek K, Kim K. Angew Chem Int Ed, 2019, 58(47): 16850-16853. doi:10.1002/anie.201910161http://dx.doi.org/10.1002/anie.201910161
Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij P Y, Isaacs L. J Am Cheml Soc, 2005, 127(45): 15959-15967. doi:10.1021/ja055013xhttp://dx.doi.org/10.1021/ja055013x
Lee J W, Samal S, Selvapalam N, Kim H J, Kim K. Acc Chem Res, 2003, 36(8): 621-630. doi:10.1021/ar020254khttp://dx.doi.org/10.1021/ar020254k
Uhlenheuer D A, Wasserberg D, Nguyen H, Zhang L, Blum C, Subramaniam V, Brunsveld L. Chem Eur J, 2009, 15(35): 8779-8790. doi:10.1002/chem.200900462http://dx.doi.org/10.1002/chem.200900462
Zhang L, Wu Y, Brunsveld L. Angew Chem Int Ed, 2007, 119(11): 1830-1834. doi:10.1002/ange.200604222http://dx.doi.org/10.1002/ange.200604222
Wang R, Qiao S, Zhao L, Hou C, Li X, Liu Y, Luo Q, Xu J, Li H, Liu J. Chem Commun, 2017, 53(76): 10532-10535. doi:10.1039/c7cc05745hhttp://dx.doi.org/10.1039/c7cc05745h
Hou C, Li J, Zhao L, Zhang W, Luo Q, Dong Z, Xu J, Liu J. Angew Chem Int Ed, 2013, 125(21): 5700-5703. doi:10.1002/ange.201300692http://dx.doi.org/10.1002/ange.201300692
Si C, Li J, Luo Q, Hou C, Pan T, Li H, Liu J. Chem Commun, 2016, 52(14): 2924-2927. doi:10.1039/c5cc10373hhttp://dx.doi.org/10.1039/c5cc10373h
Li Y, Zhao L, Chen H, Tian R, Li F, Luo Q, Xu J, Hou C, Liu J. Chem Commun, 2021, 57(81): 10620-10623. doi:10.1039/d1cc03654hhttp://dx.doi.org/10.1039/d1cc03654h
Huber A. Eur J Neurosci, 2001, 14(5): 769-776. doi:10.1046/j.0953-816x.2001.01704.xhttp://dx.doi.org/10.1046/j.0953-816x.2001.01704.x
Watson J D, Crick F H. Nature, 1953, 171(4356): 737-738. doi:10.1038/171737a0http://dx.doi.org/10.1038/171737a0
Lee L A, Niu Z, Wang Q. Nano Res, 2009, 2(5): 349-364. doi:10.1007/s12274-009-9033-8http://dx.doi.org/10.1007/s12274-009-9033-8
Shih Y L, Rothfield L. Microbiol Mol Biol R, 2006, 70(3): 729-754. doi:10.1128/mmbr.00017-06http://dx.doi.org/10.1128/mmbr.00017-06
Soontornniyomkij V, Choi C, Pomakian J, Vinters H V. Hum Pathol, 2010, 41(11): 1601-1608. doi:10.1016/j.humpath.2010.04.011http://dx.doi.org/10.1016/j.humpath.2010.04.011
Wang S, Li C, Xia Y, Chen S, Robert J, Banquy X, Huang R, Qi W, He Z, Su R. iScience, 2020, 23(5): 101044. doi:10.1016/j.isci.2020.101044http://dx.doi.org/10.1016/j.isci.2020.101044
Price D L, Sisodia S S, Gandy S E. Curr Opin Neurol, 1995, 8(4): 268-274. doi:10.1097/00019052-199508000-00004http://dx.doi.org/10.1097/00019052-199508000-00004
Szczepek M, Brondani V, Büchel J, Serrano L, Segal D J, Cathomen T. Nat Biotechnol, 2007, 25(7): 786-793. doi:10.1038/nbt1317http://dx.doi.org/10.1038/nbt1317
Liu C, Zhao M, Jiang L, Cheng P N, Park J, Sawaya M R, Pensalfini A, Gou D, Berk A J, Glabe C G, Nowick J, Eisenberg D. Proc Natl Acad Sci, 2012, 109(51): 20913-20918. doi:10.1073/pnas.1218792109http://dx.doi.org/10.1073/pnas.1218792109
Dueholm M S, Nielsen S B, Hein K L, Nissen P, Chapman M, Christiansen G, Nielsen P H, Otzen D E. Biochemistry, 2011, 50(39): 8281-8290. doi:10.1021/bi200967chttp://dx.doi.org/10.1021/bi200967c
Li Y, Li K, Wang X, An B, Cui M, Pu J, Wei S, Xue S, Ye H, Zhao Y, Liu M, Wang Z, Zhong C. Nano Lett, 2019, 19(12): 8399-8408. doi:10.1021/acs.nanolett.9b02324http://dx.doi.org/10.1021/acs.nanolett.9b02324
An B, Wang X, Cui M, Gui X, Mao X, Liu Y, Li K, Chu C, Pu J, Ren S, Wang Y, Zhong G, Lu T K, Liu C, Zhong C. ACS Nano, 2017, 11(7): 6985-6995. doi:10.1021/acsnano.7b02298http://dx.doi.org/10.1021/acsnano.7b02298
Taglialegna A, Lasa I, Valle J. J Bacteriol, 2016, 198(19): 2579-2588. doi:10.1128/jb.00122-16http://dx.doi.org/10.1128/jb.00122-16
Zhang C, Li Y, Wang H, He S, Xu Y, Zhong C, Li T. Chem Sci, 2018, 9(25): 5672-5678. doi:10.1039/c8sc01591khttp://dx.doi.org/10.1039/c8sc01591k
Wang X, Pu J, Liu Y, Ba F, Cui M, Li K, Xie Y, Nie Y, Mi Q, Li T, Liu L, Zhu M, Zhong C. Natl Sci Rev, 2019, 6(5): 929-943. doi:10.1093/nsr/nwz104http://dx.doi.org/10.1093/nsr/nwz104
McMillan J R, Hayes O G, Remis J P, Mirkin C A. J Am Chem Soc, 2018, 140(46): 15950-15956. doi:10.1021/jacs.8b10011http://dx.doi.org/10.1021/jacs.8b10011
Chhabra R, Sharma J, Ke Y, Liu Y, Rinker S, Lindsay S, Yan H. J Am Chem Soc, 2007, 129(34): 10304-10305. doi:10.1021/ja072410uhttp://dx.doi.org/10.1021/ja072410u
Winegar P H, Hayes O G, McMillan J R, Figg C A, Focia P J, Mirkin C A. Chem, 2020, 6(4): 1007-1017. doi:10.1016/j.chempr.2020.03.002http://dx.doi.org/10.1016/j.chempr.2020.03.002
Brodin J D, Auyeung E, Mirkin C A. Proc Natl Acad Sci, 2015, 112(15): 4564-4569. doi:10.1073/pnas.1503533112http://dx.doi.org/10.1073/pnas.1503533112
Kashiwagi D, Sim S, Niwa T, Taguchi H, Aida T. J Am Chem Soc, 2018, 140(1): 26-29. doi:10.1021/jacs.7b09892http://dx.doi.org/10.1021/jacs.7b09892
Lin C, Liu Y, Rinker S, Yan H. ChemPhysChem, 2006, 7(8): 1641-1647. doi:10.1002/cphc.200600260http://dx.doi.org/10.1002/cphc.200600260
Park S H, Yin P, Liu Y, Reif J H, LaBean T H, Yan H. Nano Lett, 2005, 5(4): 729-733. doi:10.1021/nl050175chttp://dx.doi.org/10.1021/nl050175c
Kim Y, Macfarlane R J, Jones M R, Mirkin C A. Science, 2016, 351(6273): 579-582. doi:10.1126/science.aad2212http://dx.doi.org/10.1126/science.aad2212
Niemeyer C M. Angew Chem Int Ed, 2010, 49(7): 1200-1216
Saccà B, Niemeyer C M. Chem Soc Rev, 2011, 40(12): 5910-5921. doi:10.1039/c1cs15212bhttp://dx.doi.org/10.1039/c1cs15212b
Song Q, Goia S, Yang J, Hall S C, Staniforth M, Stavros V G, Perrier S B. J Am Chem Soc, 2020, 143(1): 382-389. doi:10.1021/jacs.0c11060http://dx.doi.org/10.1021/jacs.0c11060
Medalsy I, Dgany O, Sowwan M, Cohen H, Yukashevska A, Wolf S G, Wolf A, Koster A, Almog O, Marton I, Pouny Y, Altman A, Shoseyov O, Porath D. Nano Lett, 2008, 8(2): 473-477. doi:10.1021/nl072455thttp://dx.doi.org/10.1021/nl072455t
Kohn W D, Mant C T, Hodges R S. J Biol Chem, 1997, 272(5): 2583-2586. doi:10.1074/jbc.272.5.2583http://dx.doi.org/10.1074/jbc.272.5.2583
Lupas A N, Gruber M. Adv Protein Chem, 2005, 70: 37-38. doi:10.1016/s0065-3233(05)70003-6http://dx.doi.org/10.1016/s0065-3233(05)70003-6
Glover J, Harrison S C. Nature, 1995, 373(6511): 257-261. doi:10.1038/373257a0http://dx.doi.org/10.1038/373257a0
Maurice M S, Mera P E, Taranto M P, Sesma F, Escalante-Semerena J C, Rayment I. J Biol Chem, 2007, 282(4): 2596-2605. doi:10.1074/jbc.m609557200http://dx.doi.org/10.1074/jbc.m609557200
Sharp T H, Bruning M, Mantell J, Sessions R B, Thomson A R, Zaccai N R, Brady R L, Verkade P, Woolfson D N. Proc Natl Acad Sci, 2012, 109(33): 13266-13271. doi:10.1073/pnas.1118622109http://dx.doi.org/10.1073/pnas.1118622109
Katz B Z, Krylov D, Aota S I, Olive M, Vinson C, Yamada K. Biotechniques, 1998, 25(2): 298-304. doi:10.2144/98252rr01http://dx.doi.org/10.2144/98252rr01
Arndt K M, MuÈller K M, PluÈckthun A. J Mol Biol, 2001, 312(1): 221-228
Dietz H, Bornschlögl T, Heym R, König F, Rief M. New J Phys, 2007, 9(11): 424-424. doi:10.1088/1367-2630/9/11/424http://dx.doi.org/10.1088/1367-2630/9/11/424
Qiao S, Wang R, Yan T, Li X, Zhao L, Zhang X, Fan X, Wang T, Liu Y, Hou C, Luo Q, Xu J, Liu J. Part Part Syst Charact, 2018, 35(3): 1700436. doi:10.1002/ppsc.201700436http://dx.doi.org/10.1002/ppsc.201700436
Park W, Champion J. J Am Chem Soc, 2014, 136(52): 17906-17909. doi:10.1021/ja5090157http://dx.doi.org/10.1021/ja5090157
Li Y, Champion J A. Adv Healthc Mater, 2021, 10(15): 2001810. doi:10.1002/adhm.202001810http://dx.doi.org/10.1002/adhm.202001810
Jiang X, Feng T, An B, Ren S, Meng J, Li K, Liu S, Wu H, Zhang H, Zhong C. Adv Mater, 2022: 2201411. doi:10.1002/adma.202201411http://dx.doi.org/10.1002/adma.202201411
Thomas C S, Glassman M J, Olsen B D. ACS Nano, 2011, 5(7): 5697-5707. doi:10.1021/nn2013673http://dx.doi.org/10.1021/nn2013673
Thomas C S, Xu L, Olsen B D. Biomacromolecules, 2012, 13(9): 2781-2792. doi:10.1021/bm300763xhttp://dx.doi.org/10.1021/bm300763x
Wang T, Xu J, Fan X, Yan X, Yao D, Li R, Liu S, Li X, Liu J. ACS Appl Mater Interfaces, 2019, 11(50): 47619-47624. doi:10.1021/acsami.9b18160http://dx.doi.org/10.1021/acsami.9b18160
Mikkilä J, Anaya-Plaza E, Liljeström V, Caston J R, Torres T, de la Escosura A s, Kostiainen M A. ACS Nano, 2016, 10(1): 1565-1571
Müller M K, Petkau K, Brunsveld L. Chem Commun, 2011, 47(1): 310-312. doi:10.1039/c0cc02084bhttp://dx.doi.org/10.1039/c0cc02084b
Sakai F, Yang G, Weiss M S, Liu Y, Chen G, Jiang M. Nat Commun, 2014, 5(1): 1-8. doi:10.1038/ncomms5634http://dx.doi.org/10.1038/ncomms5634
Yang G, Zhang X, Kochovski Z, Zhang Y, Dai B, Sakai F, Jiang L, Lu Y, Ballauff M, Li X, Liu C, Chen G, Jiang M. J Am Chem Soc, 2016, 138(6): 1932-1937. doi:10.1021/jacs.5b11733http://dx.doi.org/10.1021/jacs.5b11733
Yang G, Hu R, Ding H m, Kochovski Z, Mei S, Lu Y, Ma Y Q, Chen G, Jiang M. Mater Chem Front, 2018, 2(9): 1642-1646. doi:10.1039/c8qm00245bhttp://dx.doi.org/10.1039/c8qm00245b
Li X, Tian R, Ji Y, Liu S, Jiang X, Li F, Luo Q, Hou C, Xu J, Liu J. ACS Macro Lett, 2021, 10(2): 307-311. doi:10.1021/acsmacrolett.0c00805http://dx.doi.org/10.1021/acsmacrolett.0c00805
Kitagishi H, Kakikura Y, Yamaguchi H, Oohora K, Harada A, Hayashi T. Angew Chem Int Ed, 2009, 48(7): 1271-1274. doi:10.1002/anie.200804006http://dx.doi.org/10.1002/anie.200804006
Oohora K, Onoda A, Kitagishi H, Yamaguchi H, Harada A, Hayashi T. Chem Sci, 2011, 2(6): 1033-1038. doi:10.1039/c1sc00084ehttp://dx.doi.org/10.1039/c1sc00084e
Kostiainen M A, Pietsch C, Hoogenboom R, Nolte R J, Cornelissen J J. Adv Funct Mater, 2011, 21(11): 2012-2019. doi:10.1002/adfm.201002597http://dx.doi.org/10.1002/adfm.201002597
Kostiainen M A, Hiekkataipale P, Jose Á, Nolte R J, Cornelissen J J. J Mater Chem, 2011, 21(7): 2112-2117. doi:10.1039/c0jm02592ehttp://dx.doi.org/10.1039/c0jm02592e
Kostiainen M A, Kasyutich O, Cornelissen J J, Nolte R J. Nat Chem, 2010, 2(5): 394-399. doi:10.1038/nchem.592http://dx.doi.org/10.1038/nchem.592
Liljeström V, Ora A, Hassinen J, Rekola H T, Heilala M, Hynninen V, Joensuu J J, Ras R H A, Törmä P, Ikkala O, Kostiainen M A. Nat Commun, 2017, 8(1): 1-10. doi:10.1038/s41467-017-00697-zhttp://dx.doi.org/10.1038/s41467-017-00697-z
Sun H, Zhao L, Wang T, An G, Fu S, Li X, Deng X, Liu J. Chem Commun, 2016, 52(35): 6001-6004. doi:10.1039/c6cc01730dhttp://dx.doi.org/10.1039/c6cc01730d
Heyman A, Levy I, Altman A, Shoseyov O. Nano Lett, 2007, 7(6): 1575-1579. doi:10.1021/nl070450qhttp://dx.doi.org/10.1021/nl070450q
Sun H, Miao L, Li J, Fu S, An G, Si C, Dong Z, Luo Q, Yu S, Xu J, Liu J. ACS Nano, 2015, 9(5): 5461-5469. doi:10.1021/acsnano.5b01311http://dx.doi.org/10.1021/acsnano.5b01311
Bachar O, Meirovich M M, Zeibaq Y, Yehezkeli O. Angew Chem Int Ed, 2022, 61(23): e202202457. doi:10.1002/anie.202202457http://dx.doi.org/10.1002/anie.202202457
He Y, Tian Y, Ribbe A E, Mao C. J Am Chem Soc, 2006, 128(39): 12664-12665. doi:10.1021/ja065467+http://dx.doi.org/10.1021/ja065467+
Jahns A C, Maspolim Y, Chen S, Guthrie J M, Blackwell L F, Rehm B H. Bioconjug Chem, 2013, 24(8): 1314-1323. doi:10.1021/bc300551jhttp://dx.doi.org/10.1021/bc300551j
Zhang N, Zhao F, Zou Q, Li Y, Ma G, Yan X. Small, 2016, 12(43): 5936-5943. doi:10.1002/smll.201602339http://dx.doi.org/10.1002/smll.201602339
Cao J, Guenther R H, Sit T L, Opperman C H, Lommel S A, Willoughby J A. Small, 2014, 10(24): 5126-5136. doi:10.1002/smll.201400558http://dx.doi.org/10.1002/smll.201400558
Blankenship R E, Tiede D M, Barber J, Brudvig G W, Fleming G, Ghirardi M, Gunner M R, Junge W, Kramer D M, Melis A, Moore T A, Moser C C, Nocera D G, Nozik A J, Ort D R, Parson W W, Prince R C, Sayre R T. Science, 2011, 332(6031): 805-809. doi:10.1126/science.1200165http://dx.doi.org/10.1126/science.1200165
Brodin J D, Carr J R, Sontz P A, Tezcan F A. Proc Natl Acad Sci, 2014, 111(8): 2897-2902. doi:10.1073/pnas.1319866111http://dx.doi.org/10.1073/pnas.1319866111
Hwang I W, Kamada T, Ahn T K, Ko D M, Nakamura T, Tsuda A, Osuka A, Kim D. J Am Chem Soc, 2004, 126(49): 16187-16198. doi:10.1021/ja046241ehttp://dx.doi.org/10.1021/ja046241e
Chen X M, Cao Q, Bisoyi H K, Wang M, Yang H, Li Q. Angew Chem Int Ed, 2020, 132(26): 10579-10583. doi:10.1002/ange.202003427http://dx.doi.org/10.1002/ange.202003427
Hao M, Sun G, Zuo M, Xu Z, Chen Y, Hu X Y, Wang L. Angew Chem Int Ed, 2020, 59(25): 10095-10100. doi:10.1002/anie.201912654http://dx.doi.org/10.1002/anie.201912654
Parkinson P, Knappke C E, Kamonsutthipaijit N, Sirithip K, Matichak J D, Anderson H L, Herz L M. J Am Chem Soc, 2014, 136(23): 8217-8220. doi:10.1021/ja504730jhttp://dx.doi.org/10.1021/ja504730j
Sturgis J N, Tucker J D, Olsen J D, Hunter C N, Niederman R A. Biochemistry, 2009, 48(17): 3679-3698. doi:10.1021/bi900045xhttp://dx.doi.org/10.1021/bi900045x
Koepke J, Hu X, Muenke C, Schulten K, Michel H. Structure, 1996, 4(5): 581-597. doi:10.1016/s0969-2126(96)00063-9http://dx.doi.org/10.1016/s0969-2126(96)00063-9
McDermott G, Prince S, Freer A, Hawthornthwaite-Lawless A, Papiz M, Cogdell R, Isaacs N. Nature, 1995, 374(6522): 517-521. doi:10.1038/374517a0http://dx.doi.org/10.1038/374517a0
Dau H, Zaharieva I. Acc Chem Res, 2009, 42(12): 1861-1870. doi:10.1021/ar900225yhttp://dx.doi.org/10.1021/ar900225y
Miller R A, Presley A D, Francis M B. J Am Chem Soc, 2007, 129(11): 3104-3109. doi:10.1021/ja063887thttp://dx.doi.org/10.1021/ja063887t
Miao L, Han J, Zhang H, Zhao L, Si C, Zhang X, Hou C, Luo Q, Xu J, Liu J. ACS Nano, 2014, 8(4): 3743-3751. doi:10.1021/nn500414uhttp://dx.doi.org/10.1021/nn500414u
Zhao L, Zou H, Zhang H, Sun H, Wang T, Pan T, Li X, Bai Y, Qiao S, Luo Q, Xu J, Hou C, Liu J. ACS Nano, 2017, 11(1): 938-945. doi:10.1021/acsnano.6b07527http://dx.doi.org/10.1021/acsnano.6b07527
Gonçalves A M, Pedro A Q, Santos F M, Martins L M, Maia C J, Queiroz J A, Passarinha L A. Molecules, 2014, 19(8): 12461-12485. doi:10.3390/molecules190812461http://dx.doi.org/10.3390/molecules190812461
Sasso L, Suei S, Domigan L, Healy J, Nock V, Williams M, Gerrard J. Nanoscale, 2014, 6(3): 1629-1634. doi:10.1039/c3nr05752fhttp://dx.doi.org/10.1039/c3nr05752f
Wang X, Li Y, Zhong C. J Mater Chem B, 2015, 3(25): 4953-4958. doi:10.1039/c5tb00374ahttp://dx.doi.org/10.1039/c5tb00374a
Kim S H, Parquette J R. Nanoscale, 2012, 4(22): 6940-6947. doi:10.1039/c2nr32140hhttp://dx.doi.org/10.1039/c2nr32140h
Knowles T P, Buehler M J. Nat Nanotechnol, 2011, 6(8): 469-479. doi:10.1038/nnano.2011.102http://dx.doi.org/10.1038/nnano.2011.102
Wang X, Smith D R, Jones J W, Chapman M R. J Biol Chem, 2007, 282(6): 3713-3719. doi:10.1074/jbc.m609228200http://dx.doi.org/10.1074/jbc.m609228200
Leng Y, Wei H P, Zhang Z P, Zhou Y F, Deng J Y, Cui Z Q, Men D, You X Y, Yu Z N, Luo M, Zhang X E. Angew Chem Int Ed, 2010, 49(40): 7243-7246. doi:10.1002/anie.201002452http://dx.doi.org/10.1002/anie.201002452
Pena-Francesch A, Jung H, Demirel M C, Sitti M. Nat Mater, 2020, 19(11): 1230-1235. doi:10.1038/s41563-020-0736-2http://dx.doi.org/10.1038/s41563-020-0736-2
Letts J A, Fiedorczuk K, Sazanov L A. Nature, 2016, 537(7622): 644-648. doi:10.1038/nature19774http://dx.doi.org/10.1038/nature19774
Liu X, Yuk H, Lin S, Parada G A, Tang T C, Tham E, de la Fuente‐Nunez C, Lu T K, Zhao X. Adv Mater, 2018, 30(4): 1704821. doi:10.1002/adma.201704821http://dx.doi.org/10.1002/adma.201704821
Gao Y, Luo Q, Qiao S, Wang L, Dong Z, Xu J, Liu J. Angew Chem Int Ed, 2014, 53(35): 9343-9346. doi:10.1002/anie.201404531http://dx.doi.org/10.1002/anie.201404531
Wang R, Yang Z, Luo J, Hsing I M, Sun F. Proc Natl Acad Sci, 2017, 114(23): 5912-5917. doi:10.1073/pnas.1621350114http://dx.doi.org/10.1073/pnas.1621350114
Laptenok S P, Gil A A, Hall C R, Lukacs A, Iuliano J N, Jones G A, Greetham G M, Donaldson P, Miyawaki A, Tonge P J, Meech S R. Nat Chem, 2018, 10(8): 845-852. doi:10.1038/s41557-018-0073-0http://dx.doi.org/10.1038/s41557-018-0073-0
Lyu S, Fang J, Duan T, Fu L, Liu J, Li H. Chem Commun, 2017, 53(100): 13375-13378. doi:10.1039/c7cc06991jhttp://dx.doi.org/10.1039/c7cc06991j
Wu X, Huang W, Wu W H, Xue B, Xiang D, Li Y, Qin M, Sun F, Wang W, Zhang W B, Cao Y. Nano Res, 2018, 11(10): 5556-5565. doi:10.1007/s12274-017-1890-yhttp://dx.doi.org/10.1007/s12274-017-1890-y
Sun F, Zhang W B, Mahdavi A, Arnold F H, Tirrell D A. Proc Natl Acad Sci, 2014, 111(31): 11269-11274. doi:10.1073/pnas.1401291111http://dx.doi.org/10.1073/pnas.1401291111
Murphy W L, McDevitt T C, Engler A J. Nat Mater, 2014, 13(6): 547-557. doi:10.1038/nmat3937http://dx.doi.org/10.1038/nmat3937
Yang Z, Kou S, Wei X, Zhang F, Li F, Wang X W, Lin Y, Wan C, Zhang W B, Sun F. ACS Macro Lett, 2018, 7(12): 1468-1474. doi:10.1021/acsmacrolett.8b00845http://dx.doi.org/10.1021/acsmacrolett.8b00845
Dooling L J, Buck M E, Zhang W B, Tirrell D A. Adv Mater, 2016, 28(23): 4651-4657. doi:10.1002/adma.201506216http://dx.doi.org/10.1002/adma.201506216
An B, Wang Y, Jiang X, Ma C, Mimee M, Moser F, Li K, Wang X, Tang T C, Huang Y, Liu Y, Lu T K, Zhong C. Matter, 2020, 3(6): 2080-2092. doi:10.1016/j.matt.2020.09.006http://dx.doi.org/10.1016/j.matt.2020.09.006
Wang X, Pu J, An B, Li Y, Shang Y, Ning Z, Liu Y, Ba F, Zhang J, Zhong C. Adv Mater, 2018, 30(16): 1705968. doi:10.1002/adma.201705968http://dx.doi.org/10.1002/adma.201705968
Li Y, Li K, Wang X, Cui M, Ge P, Zhang J, Qiu F, Zhong C. Sci Adv, 2020, 6(21): eaba1425. doi:10.1126/sciadv.aba1425http://dx.doi.org/10.1126/sciadv.aba1425
Zhang C, Huang J, Zhang J, Liu S, Cui M, An B, Wang X, Pu J, Zhang T, Fan C, Lu T K, Zhong C. Mater Today, 2019, 28: 40-48. doi:10.1016/j.mattod.2018.12.039http://dx.doi.org/10.1016/j.mattod.2018.12.039
0
Views
232
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution