浏览全部资源
扫码关注微信
浙江大学化学工程与生物工程学院 化学工程联合国家重点实验室 杭州 310027
Tao Xie, E-mail: taoxie@zju.edu.cn
Published:20 October 2022,
Published Online:27 July 2022,
Received:06 May 2022,
Accepted:02 June 2022
移动端阅览
倪楚君,谢涛.可时空编程的超分子形状记忆高分子[J].高分子学报,2022,53(10):1161-1172.
Ni Chu-jun,Xie Tao.Spatio-temporal Programmable Supramolecular Shape Memory Polymer[J].ACTA POLYMERICA SINICA,2022,53(10):1161-1172.
倪楚君,谢涛.可时空编程的超分子形状记忆高分子[J].高分子学报,2022,53(10):1161-1172. DOI: 10.11777/j.issn1000-3304.2022.22170.
Ni Chu-jun,Xie Tao.Spatio-temporal Programmable Supramolecular Shape Memory Polymer[J].ACTA POLYMERICA SINICA,2022,53(10):1161-1172. DOI: 10.11777/j.issn1000-3304.2022.22170.
基于超分子作用的形状记忆高分子具有不同于传统热固性形状记忆高分子的突出特点,包括多重刺激响应性、 自修复性、重回收性、固态塑性等. 超分子作用的动态可逆特性和丰富的分子设计空间带来的可能性远不仅于此. 本文着重介绍了近期报道的基于超分子作用的新型形状记忆高分子,旨在揭示其中的分子设计理念以及独特的宏观行为,拓宽现有超分子形状记忆高分子的应用空间. 在此基础上,我们进一步具体介绍一类可自发变形的超分子形状记忆高分子. 该类材料通过时间编程可实现无刺激的可控变形行为,打破了常规的刺激响应变形模式. 超分子作用所具备的时空编程性为未来智能材料的设计提供全新的思路.
Owing to the dynamic nature and the rich library of supramolecular interactions
supramolecular shape memory polymers have shown unique benefits beyond traditional thermoset shape memory polymers including multi-stimuli response
self-healing
recyclability
and solid-state plasticity. Thanks to extensive research over the last two decades
the above characteristics have become well-established. Despite that
new material design opportunities beyond those continue to emerge in the recent five years. In particular
supramolecular shape memory polymer has been reported to possess unusually high output energy density
via
strain-induced formation of ordered supramolecular structures
which are beneficial for use as artificial muscles. In addition
the hydrophobic domain in a hydrogel has been demonstrated to b
e effective in fixing the anisotropy of the poly(
N
-isopropylacrylamide) chains
giving rise to two-way reversible shape memory behavior in hydrogels. Intriguingly
the change in glassy transition temperature due to photo-isomerization of azobenzene moieties leads to athermal shape memory polymers for which no heating/cooling is required for the entire shape memory cycle. Rational design of a shape memory network with self-complementary hydrogen bonding interactions endows the material with superior toughness and multi-recyclability. Collectively
these recent progresses have expanded the scope of shape memory polymers
which are summarized in the first half of this article. The above developments typically take advantage of the on-off switch offered by supramolecular interactions
but their dynamic reorganization process has been by and large neglected. Several reports in the last three years have shown that this latter characteristic is uniquely useful in designing autonomous shape memory polymers for which no external stimulation is needed to trigger the shape recovery. These supramolecular autonomous shape memory polymers are discussed in the second half of this article. This class of materials utilize the time- and temperature-dependent exchange kinetics of supramolecular interactions to manipulate the entropic energy stored
via
spatio-temporal programming
as a way to control the shape-shifting. This autonomous shape-shifting mode differs drastically from traditional stimuli-responsive shape memory polymers and its trigger-free nature can open up new device applications in which access to external stimulation is difficult. We believe that the principle of spatio-temporal programming
via
supramolecular interactions can be potentially expanded to other molecular mechanisms
which will provide a new perspective for smart material design in the future.
超分子作用形状记忆时空编程自发变形
Supramolecular interactionShape memory polymerSpatio-temporal programmingAutonomous shapeshifting
Aida T, Meijer E W, Stupp S I. Science, 2012, 335(6070): 813-817. doi:10.1126/science.1205962http://dx.doi.org/10.1126/science.1205962
Ma C X, Li T F, Zhao Q, Yang X X, Wu J J, Luo Y W, Xie T. Adv Mater, 2014, 26(32): 5665-5669. doi:10.1002/adma.201402026http://dx.doi.org/10.1002/adma.201402026
Zhang Xi(张希), Wang Liyan(王力彦), Xu Jiangfei(徐江飞), Chen Daoyong(陈道勇), Shi Linqi(史林启), Zhou Yongfeng(周永丰), Shen Zhihao(沈志豪). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 973-987. doi:10.11777/j.issn1000-3304.2019.19no6http://dx.doi.org/10.11777/j.issn1000-3304.2019.19no6
Vatankhah-Varnosfaderani M, Keith A N, Cong Y D, Liang H Y, Rosenthal M, Sztucki M, Clair C, Magonov S, Ivanov D A, Dobrynin A V, Sheiko S S. Science, 2018, 359(6383): 1509-1513. doi:10.1126/science.aar5308http://dx.doi.org/10.1126/science.aar5308
Voorhaar L, Hoogenboom R. Chem Soc Rev, 2016, 45(14): 4013-4031. doi:10.1039/c6cs00130khttp://dx.doi.org/10.1039/c6cs00130k
Cheng Mengjiao(成梦娇), Shi Feng(石峰). Acta Polymerica Sinica(高分子学报), 2020, 51(6): 598-608. doi:10.11777/j.issn1000-3304.2020.20016http://dx.doi.org/10.11777/j.issn1000-3304.2020.20016
Li J, Wang J X, Li H X, Song N, Wang D, Tang B Z. Chem Soc Rev, 2020, 49(4):1144-1172. doi:10.1039/c9cs00495ehttp://dx.doi.org/10.1039/c9cs00495e
Dong R J, Zhou Y F, Huang X H, Zhu X Y, Lu Y F, Shen J. Adv Mater, 2015(3), 27: 498-526. doi:10.1002/adma.201402975http://dx.doi.org/10.1002/adma.201402975
Biedermann F, Schneider H. Chem Rev, 2016, 116(9): 5216-5300. doi:10.1021/acs.chemrev.5b00583http://dx.doi.org/10.1021/acs.chemrev.5b00583
Yan X Z, Wang F, Zheng B, Huang F H. Chem Soc Rev, 2012(18), 41: 6042-6065. doi:10.1039/c2cs35091bhttp://dx.doi.org/10.1039/c2cs35091b
Zhang Q, Qu D H, Tian H. Adv Optical Mater, 2019, 7(16): 1900033. doi:10.1002/adom.201900033http://dx.doi.org/10.1002/adom.201900033
Chen L J, Yang H B. Acc Chem Res, 2018, 51(11): 2699-2710. doi:10.1021/acs.accounts.8b00317http://dx.doi.org/10.1021/acs.accounts.8b00317
Lu W, Le X X, Zhang J W, Huang Y J, Chen T. Chem Soc Rev, 2017, 46(5): 1284-1294. doi:10.1039/c6cs00754fhttp://dx.doi.org/10.1039/c6cs00754f
Kumpfer J R, Rowan S J. J Am Chem Soc, 2011, 133(32): 12866-12874. doi:10.1021/ja205332whttp://dx.doi.org/10.1021/ja205332w
Pan Yi(潘毅), Li Zonghui(李宗慧), Liu Tuo(刘拓), Zheng Zhaohui(郑朝晖), Ding Xiaobin(丁小斌), Peng Yuxing(彭宇行). Acta Polymerica Sinica(高分子学报), 2012, (2): 131-137. doi:10.3724/sp.j.1105.2012.11093http://dx.doi.org/10.3724/sp.j.1105.2012.11093
Ma Y F, Hua M T, Wu S W, Du Y J, Pei X W, Zhu X Y, Zhou F, He X M. Sci Adv, 2020, 6(47): eabd2520. doi:10.1126/sciadv.abd2520http://dx.doi.org/10.1126/sciadv.abd2520
Wang Xiaohan(王晓晗), Li Yang(李洋), Sun Junqi(孙俊奇). Acta Polymerica Sinica(高分子学报), 2021, 52(8): 1043-1052. doi:10.11777/j.issn1000-3304.2021.21133http://dx.doi.org/10.11777/j.issn1000-3304.2021.21133
Zhang Y Y, Li Y M, Liu W G. Adv Funct Mater, 2015, 25(3): 471-480. doi:10.1002/adfm.201401989http://dx.doi.org/10.1002/adfm.201401989
Liu Dezhong(刘德中), Yang Shuguang(杨曙光). Acta Polymerica Sinica(高分子学报), 2021, 52(10): 1353-1360. doi:10.11777/j.issn1000-3304.2021.21060http://dx.doi.org/10.11777/j.issn1000-3304.2021.21060
Ware T, Hearon K, Lonnecker A, Wooley K L, Maitland D J, Voit W. Macromolecules, 2012, 45(2): 1062-1069. doi:10.1021/ma202098shttp://dx.doi.org/10.1021/ma202098s
Chen G C, Jin B J, Zhao Q, Xie T. J Mater Chem A, 2021, 9(11): 6827-6830. doi:10.1039/d1ta01111ahttp://dx.doi.org/10.1039/d1ta01111a
Li Yixuan(李懿轩), Sun Junqi(孙俊奇). Acta Polymerica Sinica(高分子学报), 2020, 51(8): 791-803. doi:10.11777/j.issn1000-3304.2020.20062http://dx.doi.org/10.11777/j.issn1000-3304.2020.20062
Miyamae K, Nakahata M, Takashima Y, Harada A. Angew Chem Int Ed, 2015, 54(31): 8984-8987. doi:10.1002/anie.201502957http://dx.doi.org/10.1002/anie.201502957
Peng Yan(彭燕), Hou Yujia(侯雨佳), Shen Qiaoqiao(申巧巧), Wang Hui(王辉), Li Gang(李刚), Huang Guangsu黄光速, Wu Jinrong(吴锦荣). Acta Polymerica Sinica(高分子学报), 2020, 51(2): 158-165. doi:10.11777/j.issn1000-3304.2019.19140http://dx.doi.org/10.11777/j.issn1000-3304.2019.19140
Wang X H, Zhan S N, Lu Z Y, Li J, Yang X, Qiao Y N, Men Y F, Sun J Q. Adv Mater, 2020, 32(50): 2005759. doi:10.1002/adma.202005759http://dx.doi.org/10.1002/adma.202005759
Zhang Q, Deng Y X, Shi C Y, Feringa B L, Tian H, Qu D H. Matter, 2021, 4(4): 1352-1364. doi:10.1016/j.matt.2021.01.014http://dx.doi.org/10.1016/j.matt.2021.01.014
Yang L P, Zhang G G, Zheng N, Zhao Q, Xie T. Angew Chem Int Ed, 2017, 129(41): 12773-12776. doi:10.1002/ange.201706949http://dx.doi.org/10.1002/ange.201706949
Zheng Ning(郑宁) , Xie Tao(谢涛). Acta Polymerica Sinica(高分子学报), 2017, (11): 1715-1724. doi:10.11777/j.issn1000-3304.2017.17161http://dx.doi.org/10.11777/j.issn1000-3304.2017.17161
Podgórski M, Fairbanks B D, Kirkpatrick B E, McBride M, Martinez A, Dobson A, Bongiardina N J, Bowman C N. Adv Mater, 2020, 32(20): 1906876. doi:10.1002/adma.201906876http://dx.doi.org/10.1002/adma.201906876
Wang Haiping(汪海平), Rong Minzhi(容敏智), Zhang Mingqiu(章明秋). Prog Chem(化学进展), 2010, 22(12): 2397-2407
Cromwell O R, Chung J, Guan Z B. J Am Chem Soc, 2015, 137(20): 6492-6495. doi:10.1021/jacs.5b03551http://dx.doi.org/10.1021/jacs.5b03551
Roy N, Bruchmann B, Lehn J. Chem Soc Rev, 2015, 44(11): 3786-3807. doi:10.1039/c5cs00194chttp://dx.doi.org/10.1039/c5cs00194c
Tang S C, Richardson B M, Anseth K S. Prog Mater Sci, 2021, 120: 100738. doi:10.1016/j.pmatsci.2020.100738http://dx.doi.org/10.1016/j.pmatsci.2020.100738
Ying H Z, Zhang Y F, Cheng J J. Nat Commun, 2014, 5: 3218. doi:10.1038/ncomms4218http://dx.doi.org/10.1038/ncomms4218
Billiet S, Bruycker K D, Driessen F, Goossens H, Speybroeck V V, Winne J M, Prez F E D. Nat Chem, 2014, 6(9): 815-821. doi:10.1038/nchem.2023http://dx.doi.org/10.1038/nchem.2023
Sun H, Kabb C P, Sims M B, Sumerlin B S. Prog Polym Sci, 2019, 89: 61-75. doi:10.1016/j.progpolymsci.2018.09.006http://dx.doi.org/10.1016/j.progpolymsci.2018.09.006
Seiffert S, Sprakelc J. Chem Soc Rev, 2012, 41: 909-930. doi:10.1039/c1cs15191fhttp://dx.doi.org/10.1039/c1cs15191f
Huang Z H, Chen X Y, O’Neill S J K, Wu G L, Whitaker D J, Li J X, McCune J A, Scherman O A. Nat Mater, 2022, 21(1): 103-109. doi:10.1038/s41563-021-01124-xhttp://dx.doi.org/10.1038/s41563-021-01124-x
Grindy S C, Learsch R, Mozhdehi D, Cheng J, Barrett D G, Guan Z B, Messersmith P B, Holten-Andersen N. Nat Mater, 2015, 14(12): 1210-1216. doi:10.1038/nmat4401http://dx.doi.org/10.1038/nmat4401
Yanagisawa Y, Nan Y, Okuro K, Aida T. Science, 2018, 359(6371): 72-76. doi:10.1126/science.aam7588http://dx.doi.org/10.1126/science.aam7588
Jiang Z C, Xiao Y Y, Kang Y, Pan M, Li B J, Zhang S. ACS Appl Mater Interfaces, 2017, 9(24): 20276-20293. doi:10.1021/acsami.7b03624http://dx.doi.org/10.1021/acsami.7b03624
Cooper C B, Nikzad S, Yan H P, Ochiai Y, Lai J C, Yu Z A, Chen G, Kang J, Bao Z N. ACS Cent Sci, 2021, 7(10): 1657-1667. doi:10.1021/acscentsci.1c00829http://dx.doi.org/10.1021/acscentsci.1c00829
Liu K K, Zhang Y, Cao H Q, Liu H N, Geng Y H, Yuan W H, Zhou J, Wu Z L, Shan G R, Bao Y Z, Zhao Q, Xie T, Pan P J. Adv Mater, 2020, 32(28): 2001693. doi:10.1002/adma.202001693http://dx.doi.org/10.1002/adma.202001693
Zhang S, Qin B, Xu J F, Zhang X. ACS Mater Lett, 2021, 3(4): 331-336. doi:10.1021/acsmaterialslett.1c00053http://dx.doi.org/10.1021/acsmaterialslett.1c00053
Zhang X, Zhu C Y, Xu B, Qin L, Wei J, Yu Y L. ACS Appl Mater Interfaces, 2019, 11(49): 46212-46218. doi:10.1021/acsami.9b17271http://dx.doi.org/10.1021/acsami.9b17271
Hu X B, Zhou J, Vatankhah-Varnosfaderani M, Daniel W F M, Li Q, Zhushma A P, Dobrynin A V, Sheiko S S. Nat Commun, 2016, 7: 12919. doi:10.1038/ncomms12919http://dx.doi.org/10.1038/ncomms12919
Ni C J, Chen D, Zhang Y, Xie T, Zhao Q. Chem Mater, 2021, 33(6): 2046-2053. doi:10.1021/acs.chemmater.0c04375http://dx.doi.org/10.1021/acs.chemmater.0c04375
Peng W J, Zhang G G, Zhao Q, Xie T. Adv Mater, 2021, 33(34): 2102473. doi:10.1002/adma.202102473http://dx.doi.org/10.1002/adma.202102473
Lendlein A, Langer R. Science, 2002, 296(5573): 1673-1676. doi:10.1126/science.1066102http://dx.doi.org/10.1126/science.1066102
Zhao Q, Qi H J, Xie T. Prog Polym Sci, 2015, 49-50: 79-120. doi:10.1016/j.progpolymsci.2015.04.001http://dx.doi.org/10.1016/j.progpolymsci.2015.04.001
Li F F, Liu Y J, Leng J S. Smart Mater Struct, 2019, 28: 103003. doi:10.1088/1361-665x/ab3d5fhttp://dx.doi.org/10.1088/1361-665x/ab3d5f
Gu Y W, Alt E A, Wang H, Li X P, Willard A P, Johnson J A. Nature, 2018, 560(7716): 65-69. doi:10.1038/s41586-018-0339-0http://dx.doi.org/10.1038/s41586-018-0339-0
Vaia R, Baur J. Science, 2008, 319(5862): 420-421. doi:10.1126/science.1152931http://dx.doi.org/10.1126/science.1152931
Gladman A S, Matsumoto E A, Nuzzo R G, Mahadevan L, Lewis J A. Nat Mater, 2016, 15(4): 413-418
Kuang X, Wu J T, Chen K J, Zhao Z A, Ding Z, Hu F J Y, Fang D N, Qi H J. Sci Adv, 2019, 5(5): eaav5790. doi:10.1126/sciadv.aav5790http://dx.doi.org/10.1126/sciadv.aav5790
Fang Z Z, Song H J, Zhang Y, Jin B J, Wu J J, Zhao Q, Xie T. Matter, 2020, 2(5): 1187-1197. doi:10.1016/j.matt.2020.01.014http://dx.doi.org/10.1016/j.matt.2020.01.014
Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. Adv Mater, 2016, 28(22): 4449-4454. doi:10.1002/adma.201503132http://dx.doi.org/10.1002/adma.201503132
Mayumi K, Marcellan A, Ducouret G, Creton C, Narita T. ACS Macro Lett, 2013, 2(12): 1065-1068. doi:10.1021/mz4005106http://dx.doi.org/10.1021/mz4005106
0
Views
348
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution