Tang Jian-pu,Cui Zhen,Ou Jun-han,et al.Multi-functional Hydrogel Constructed by the Supramolecular Assembly between Ultralong DNA Chains and Tea Polyphenols[J].ACTA POLYMERICA SINICA,2022,53(10):1261-1270.
Tang Jian-pu,Cui Zhen,Ou Jun-han,et al.Multi-functional Hydrogel Constructed by the Supramolecular Assembly between Ultralong DNA Chains and Tea Polyphenols[J].ACTA POLYMERICA SINICA,2022,53(10):1261-1270. DOI: 10.11777/j.issn1000-3304.2022.22173.
Multi-functional Hydrogel Constructed by the Supramolecular Assembly between Ultralong DNA Chains and Tea Polyphenols
structural predictability and functional designability. Recently
DNA hydrogel has been widely used in bioimaging
drug delivery
the separation of biological particle and the intervention of cell behavior. However
the materials with DNA as the sole module face the challenges of structural singleness and functional limitations. To explore more synthesis methods and functions of DNA hydrogel
researchers have introduced hybrid functional modules to develop new molecular assembly strategies. As natural polyphenols
tea polyphenols (TP) have been proven to have good antioxidant
antibacterial
antiviral and anti-tumor activities
which make TP potential for various biological applications. Previous studies have shown that stable hydrogen bonds can be formed between the phosphate groups of DNA and the phenolic hydroxyl groups of polyphenols. Herein
a TP-DNA hydrogel based on ultralong DNA chains was synthesized by double rolling circle amplification strategy and the assembly of TP with DNA. The mass ratio of TP to DNA in TP-DNA hybrid hydrogels was optimized. The results of scanning electron microscopy and rheological test showed that TP-DNA hydrogel possessed porous structure and shear thinning property. On the other hand
the experiments of nuclease resistance
biocompatibility
antibacterial activity and wound healing evaluation were performed to explore the effect of TP on the properties of DNA hydrogels. The results showed that TP not only delayed the degradation rate of DNA hydrogel under nuclease
but also endowed the hydrogel with good antibacterial activity. In a rat wound healing model
the TP-DNA hydrogel was proven to significantly promote wound healing.
关键词
DNA水凝胶茶多酚抗菌抗降解
Keywords
DNA hydrogelTea polyphenolsAntibacterialAntidegradation
references
Seeman N C, Sleiman H F. Nat Rev Mater, 2018, 3(1): 17068. doi:10.1038/natrevmats.2017.68http://dx.doi.org/10.1038/natrevmats.2017.68
Shi Jiezhong(史杰中), Jia Haoyang(贾昊旸), Liu Dongsheng(刘冬生). Acta Polymerica Sinica(高分子学报), 2017, (1): 135-142. doi:10.11777/j.issn1000-3304.2017.16278http://dx.doi.org/10.11777/j.issn1000-3304.2017.16278
Yao C, Tang J, Zhu C, Yang S, Tang H, Dong L, Zhang C, Tang Q, Liu P, Yang D. Nano Today, 2022, 42: 101352. doi:10.1016/j.nantod.2021.101352http://dx.doi.org/10.1016/j.nantod.2021.101352
Ma W, Yang Y, Zhu J, Jia W, Zhang T, Liu Z, Chen X, Lin Y. Adv Mater, 2022: 2109609
Zheng L, Hu X, Wu H, Mo L, Xie S, Li J, Peng C, Xu S, Qiu L, Tan W. J Am Chem Soc, 2020, 142(1): 382-391. doi:10.1021/jacs.9b11046http://dx.doi.org/10.1021/jacs.9b11046
Yang Y, Liu B, Liu Y, Chen J, Sun Y, Pan X, Xu J, Xu S, Liu Z, Tan W. Nano Lett, 2022, 22(7): 2826-2834. doi:10.1021/acs.nanolett.1c04888http://dx.doi.org/10.1021/acs.nanolett.1c04888
Yao C, Tang H, Wu W, Tang J, Guo W, Luo D, Yang D. J Am Chem Soc, 2020, 142(7): 3422-3429. doi:10.1021/jacs.9b11001http://dx.doi.org/10.1021/jacs.9b11001
Yao C, Zhu C, Tang J, Ou J, Zhang R, Yang D. J Am Chem Soc, 2021, 143(46): 19330-19340. doi:10.1021/jacs.1c07036http://dx.doi.org/10.1021/jacs.1c07036
Wang Z, Song L, Liu Q, Tian R, Shang Y, Liu F, Liu S, Zhao S, Han Z, Sun J, Jiang Q, Ding B. Angew Chem Int Ed, 2021, 60(5): 2594-2598. doi:10.1002/anie.202009842http://dx.doi.org/10.1002/anie.202009842
Guo X, Li F, Liu C, Zhu Y, Xiao N, Gu Z, Luo D, Jiang J, Yang D. Angew Chem Int Ed, 2020, 59(46): 20651-20658. doi:10.1002/anie.202009387http://dx.doi.org/10.1002/anie.202009387
Li F, Liu Y, Dong Y, Chu Y, Song N, Yang D. J Am Chem Soc, 2022, 144(10): 4667-4677. doi:10.1021/jacs.2c00823http://dx.doi.org/10.1021/jacs.2c00823
Zhang R, Wu J, Ao H, Fu J, Qiao B, Wu Q, Ju H. Anal Chem, 2021, 93(28): 9933-9938. doi:10.1021/acs.analchem.1c02229http://dx.doi.org/10.1021/acs.analchem.1c02229
Ali M M, Li F, Zhang Z, Zhang K, Kang D K, Ankrum J A, Le X C, Zhao W. Chem Soc Rev, 2014, 43(10): 3324-3341. doi:10.1039/c3cs60439jhttp://dx.doi.org/10.1039/c3cs60439j
Tang J, Ou J, Zhu C, Yao C, Yang D. Adv Funct Mater, 2022, 32: 2107267. doi:10.1002/adfm.202107267http://dx.doi.org/10.1002/adfm.202107267
Ponnuswamy N, Bastings M M C, Nathwani B, Ryu J H, Chou L Y T, Vinther M, Li W A, Anastassacos F M, Mooney D J, Shih W M. Nat Commun, 2017, 8(1): 15654. doi:10.1038/ncomms15654http://dx.doi.org/10.1038/ncomms15654
Anastassacos F M, Zhao Z, Zeng Y, Shih W M. J Am Chem Soc, 2020, 142(7): 3311-3315. doi:10.1021/jacs.9b11698http://dx.doi.org/10.1021/jacs.9b11698
Khan N, Mukhtar H. Nutrients, 2019, 11(1): 39. doi:10.3390/nu11010039http://dx.doi.org/10.3390/nu11010039
Wu T, Cui C, Fan C, Xu Z, Liu Y, Liu W. Bioact Mater, 2021, 6(9): 2820-2828. doi:10.1016/j.bioactmat.2021.02.009http://dx.doi.org/10.1016/j.bioactmat.2021.02.009
Shin M, Ryu J H, Park J P, Kim K, Yang J W, Lee H. Adv Funct Mater, 2015, 25(8): 1270-1278. doi:10.1002/adfm.201403992http://dx.doi.org/10.1002/adfm.201403992
Han J, Cui Y, Li F, Gu Z, Yang D. Nano Today, 2021, 39: 101160. doi:10.1016/j.nantod.2021.101160http://dx.doi.org/10.1016/j.nantod.2021.101160