Cao Shi-mo,Zhu Jia-feng,Luo Jin-peng,et al.Dielectric Properties of Alicyclic Polyimides Derived from Cyclobutane-1,2,3,4-tetracarboxylic Dianhydride[J].ACTA POLYMERICA SINICA,2022,53(12):1514-1522.
Carbon deposition tends to occur in commercial polyimide during electric breakdown due to the high carbon content
resulting in short circuit between interlayers of the corresponding metallized film capacitors. In order to solve this problem
molecular design is employed by introducing alicyclic structure with low carbon content into polyimides in this study. Specifically
the alicyclic polyimides (PI-1-PI-5) are prepared from alicyclic dianhydride of cyclobutane-1
2
3
4-tetracarboxylic dianhydride (CBDA) and aromatic diamines. Defect-free films derived from alicyclic polyimides are obtained whose chemical structures have been assigned by FTIR. In addition
it is indicated from the XRD results that the alicyclic polyimides are amorphous. When it comes to the dielectric properties
dielectric constants of 3.83-4.74 (at 10
3
Hz) are achieved owing to the easier polarization of extranuclear electrons in cycloalkane structure in alicyclic polyimides compared to the all-aromatic polyimide such as Kapton (
ε
r
=3.5). Besides
the values of dissipation factor are in the range of 0.49% to 1.29% (at 10
3
Hz). The flexible alicyclic structure contributes to frictionless reorientation and low dielectric loss. The band gap of 3.96-4.13 eV and Weibull breakdown strength of 243-547 MV/m in the alicyclic polyimides are acquired. As
a result
the highest theoretical energy density is as high as 5.91 J/cm
3
obtained in PI-3. The last but not the least
thanks to the reduced carbon content (carbon-hydrogen ratio: 1.16-1.29)
compared to the commercial polyimide of Kapton (carbon-hydrogen ratio: 1.60)
carbon deposition behavior has been greatly suppressed because the hydrogen and oxygen elements would escape easily from the breakdown point in the form of water vapor under the high-temperature arc. Furthermore
the dielectric films of alicyclic polyimides would facilitate the self-healing behavior of the corresponding metallized film capacitor.
Li Q, Yao F Z, Liu Y, Zhang G, Wang H, Wang Q. Ann Rev Mater Res, 2018, 48(1): 219-243. doi:10.1146/annurev-matsci-070317-124435http://dx.doi.org/10.1146/annurev-matsci-070317-124435
Tan D, Zhang L, Chen Q, Irwin P. J Electron Mater, 2014, 43(12): 4569-4575. doi:10.1007/s11664-014-3440-7http://dx.doi.org/10.1007/s11664-014-3440-7
Gao Mengyan(高梦岩), Wang Changou(王畅鸥), Jia Yan(贾妍), Zhai Lei(翟磊), Mo Song(莫松), He Minhui(何民辉), Fan Lin(范琳). Acta Polymerica Sinica(高分子学报), 2021, 52(10): 1283-1297. doi:10.11777/j.issn1000-3304.2021.21094http://dx.doi.org/10.11777/j.issn1000-3304.2021.21094
Ding Mengxian(丁孟贤). Polyimide: Relationship between Chemistry, Structure and Properties and Materials (聚酰亚胺: 化学、结构与性能的关系及材料). 2nd ed(第二版). Beijing(北京): Science Press(科学出版社), 2012. 1-4. doi:10.4028/www.scientific.net/amm.188.300http://dx.doi.org/10.4028/www.scientific.net/amm.188.300
Zhu L. J Phys Chem Lett, 2014, 5(21): 3677-3687. doi:10.1021/jz501831qhttp://dx.doi.org/10.1021/jz501831q
Liu J, Min Y, Chen J, Zhou H, Wang C. Macromol Rapid Commun, 2007, 28(2): 215-219. doi:10.1002/marc.200600607http://dx.doi.org/10.1002/marc.200600607
Shen D, Liu J, Yang H, Yang S. Chem Lett, 2013, 42(10): 1230-1232. doi:10.1246/cl.130623http://dx.doi.org/10.1246/cl.130623
Song N, Shi K, Yu H, Yao H, Ma T, Zhu S, Zhang Y, Guan S. Eur Polym J, 2018, 101: 105-112. doi:10.1016/j.eurpolymj.2018.02.024http://dx.doi.org/10.1016/j.eurpolymj.2018.02.024
Tan Lin(谭麟), Liu Shumei(刘述梅), Zhao Jianqing(赵建青). Journal of Chemical Engineering of Chinese Universities(高校化学工程学报), 2012, 26(3): 499-504. doi:10.3969/j.issn.1003-9015.2012.03.023http://dx.doi.org/10.3969/j.issn.1003-9015.2012.03.023
Prateek, Thakur V K, Gupta R K. Chem Rev, 2016, 116(7): 4260-4317. doi:10.1021/acs.chemrev.5b00495http://dx.doi.org/10.1021/acs.chemrev.5b00495
Tong H, Ahmad A, Fu J, Xu H, Fan T, Hou Y, Xu J. J Appl Polym Sci, 2019, 136(34): 47883. doi:10.1002/app.47883http://dx.doi.org/10.1002/app.47883
Tong H, Fu J, Ahmad A, Fan T, Hou Y, Xu J. Macromol Mater Eng, 2019, 304(4): 1800709. doi:10.1002/mame.201800709http://dx.doi.org/10.1002/mame.201800709
Peng X, Wu Q, Jiang S, Hanif M, Chen S, Hou H. J Appl Polym Sci, 2014, 131(24): 40828. doi:10.1002/app.40828http://dx.doi.org/10.1002/app.40828
Ma R, Baldwin A F, Wang C, Offenbach I, Cakmak M, Ramprasad R, Sotzing G A. ACS Appl Mater Interfaces, 2014, 6(13): 10445-10451. doi:10.1021/am502002vhttp://dx.doi.org/10.1021/am502002v
Baldwin A F, Ma R, Wang C, Ramprasad R, Sotzing G A. J Appl Polym Sci, 2013, 130(2): 1276-1280. doi:10.1002/app.39240http://dx.doi.org/10.1002/app.39240
Volksen W. High Perform Polym, 1994, 117: 111-164
Yang Zhenghui(杨正慧), Kang Chuanqing(康传清), Guo Haiquan(郭海泉), Gao Lianxun(高连勋). Acta Polymerica Sinica(高分子学报), 2021, 52(10): 1308-1315. doi:10.11777/j.issn1000-3304.2021.21077http://dx.doi.org/10.11777/j.issn1000-3304.2021.21077
Ha K, West J L. J Appl Polym Sci, 2002, 86(12): 3072-3077. doi:10.1002/app.11315http://dx.doi.org/10.1002/app.11315
Chen Yunxia(陈云霞), Zhou Xuedong(周学东), He Xin(何鑫). China Ceramic Industry(中国陶瓷工业), 2007, 14(5): 6-10. doi:10.3969/j.issn.1006-2874.2007.05.002http://dx.doi.org/10.3969/j.issn.1006-2874.2007.05.002
Wu S, Burlingame Q, Cheng Z X, Lin M, Zhang Q M. J Electron Mater, 2014, 43(12): 4548-4551. doi:10.1007/s11664-014-3374-0http://dx.doi.org/10.1007/s11664-014-3374-0
Yuan X, Matsuyama Y, Chung T C M. Macromolecules, 2010, 43(9): 4011-4015. doi:10.1021/ma100209dhttp://dx.doi.org/10.1021/ma100209d
Li Hua(李化), Zhang Miao(章妙), Lin Fuchang(林福昌), Lv Fei(吕霏), Li Zhicheng(李智成), Peng Bo(彭波). Transactions of China Electrotechnical Society(电工技术学报), 2012, 27(9): 218-223, 230
Reed C W, Cichanowskil S W. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5): 904-922. doi:10.1109/94.326658http://dx.doi.org/10.1109/94.326658
Ho J S, Greenbaum S G. ACS Appl Mater Interfaces, 2018, 10(35): 29189-29218. doi:10.1021/acsami.8b07705http://dx.doi.org/10.1021/acsami.8b07705
Preparation and Properties of Composite Proton Exchange Membranes from Tröger's Base-based Polyimides/Polybenzimidazoles for Fuel Cells Operating in a Wide Temperature Range
Preparation and Performance of Thermally Rearranged Gas Separation Membranes Containing Tetraarylimidazole Structure
Preparation, Processing and Thermal Properties of Naphthaleneethynyl-terminated Silica-containing Polyimides
Preparation of Colorless Transparent Polyimide Films with High Comprehensive Properties
Related Author
Jian-ming Zhong
Jun-ming Dai
Yu Zhang
Qing-mei Zhao
Xu Zhang
Yong-bing Zhuang
Pin-ru Li
Guo-yong Xiao
Related Institution
School of Chemical Engineering, University of Chinese Academy of Sciences
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
Chemistry and Environmental Engineering, Yangtze University
Carbon Research Laboratory, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
School of Chemical Engineering, University of Science and Technology Liaoning