浏览全部资源
扫码关注微信
上海市先进聚合物材料重点实验室 华东理工大学材料科学与工程学院 上海 200237
Xin-feng Tao, E-mail: taoxinfeng@ecust.edu.cn
Shao-liang Lin, E-mail: slin@ecust.edu.cn
Published:20 December 2022,
Published Online:02 September 2022,
Received:23 May 2022,
Accepted:07 June 2022
移动端阅览
戚家乐,姚远,陶鑫峰等.含芳香侧链聚类肽的合成与自组装[J].高分子学报,2022,53(12):1475-1483.
Qi Jia-le,Yao Yuan,Tao Xin-feng,et al.Synthesis and Self-assembly of Polypeptoids with Aromatic Side Chains[J].ACTA POLYMERICA SINICA,2022,53(12):1475-1483.
戚家乐,姚远,陶鑫峰等.含芳香侧链聚类肽的合成与自组装[J].高分子学报,2022,53(12):1475-1483. DOI: 10.11777/j.issn1000-3304.2022.22195.
Qi Jia-le,Yao Yuan,Tao Xin-feng,et al.Synthesis and Self-assembly of Polypeptoids with Aromatic Side Chains[J].ACTA POLYMERICA SINICA,2022,53(12):1475-1483. DOI: 10.11777/j.issn1000-3304.2022.22195.
设计合成了一种侧链含有溴苯基团的新型
N
-取代-
N
-硫代环内羧酸酐(NNTA)单体,即
N
-4-溴苯基甘氨酸-
N
-硫代环内羧酸酐(NBrG-NTA). 以聚乙二醇胺作为大分子引发剂,乙酸作为促进剂,实现了NBrG-NTA在DMAc中的可控开环聚合,以较高的产率(
>
80%)制备得到了不同嵌段长度的两嵌段共聚物聚(乙二醇)-
b
-聚(
N
-4-溴苄基甘氨酸) (PEG-
b
-PNBrG). 体积排除色谱(SEC)测试表明产物具有较窄的分子量分布(
Đ
<
1.06). 示差扫描量热法(DSC)测试表明PNBrG嵌段具有良好的结晶性. 系统研究了PEG-
b
-PNBrG在醇类溶剂中的自组装行为,利用透射电子显微镜(TEM)对组装体的形貌进行了详细表征,根据不同的退火温度和保温时间,获得了“竹叶”状、“海胆”状和“蒲公英”状等形貌的组装体.
The solution self-assembly of c
rystalline polypeptoids to form hierarchical nanostructures with tailorable morphologies and functionalities has attracted increasing attention. While
the common crystalline polypeptoids obtained by ring-opening polymerizations (ROPs) are mainly with linear alkyl side chains. The self-assemblies of crystalline polypeptoids with aromatic side chains are rarely reported. In this study
a novel
N
-substituted-
N
-thiocarboxyanhydride (NNTA) monomer with bromophenyl side group was designed and synthesized
namely
N
-4-bromobenzylglycine-
N
-thiocarboxycanhydride (NBrG-NTA). Using poly(ethylene glycol) amine as macroinitiator and acetic acid as a promoter
the controlled ROPs of NBrG-NTA in DMAc were achieved
which produced diblock copolymers poly(ethylene glycol)-
b
-poly(
N
-4-bromobenzylglycine) (PEG-
b
-PNBrG). The structures of the diblock copolymers were confirmed by
1
H-NMR and FTIR spectra. By adjusting monomer to initiator feed molar ratios
PEG
44
-
b
-PNBrG
7
and PEG
44
-
b
-PNBrG
12
were prepared with high yields (
>
80%) and narrow molecular weight distributions (
Đ
<
1.06). The chain lengths of PNBrG blocks were closed to the feed molar ratios
which showed the good controllability of the polymerizations. DSC measurements showed that PNBrG chains of both homopolymers and block copolymers had a good crystallinity. Therefore
crystallization and solvophobic interaction-driven self-assembly of PEG-
b
-PNBrG in alcoholic solvents was systematically studied
and the morphologies of the assemblies were characterized by TEM. After annealing in
n
-butanol at 100 ℃ for 4 h
PEG
44
-
b
-PNBrG
7
was adequately dissolved
and "bamboo leaf"-like assemblies were formed after incubated at 25 ℃ for 2 h
and the size of the assemblies increased when the in
cubation time prolonged to 12 h. When the annealing time in
n
-butanol was cut down to 2 h
irregular spherical micelles were obtained at first due to the inadequate dissolution of partial PEG
44
-
b
-PNBrG
7
chains
while the fully dissolved chains assembled to spindly nano-sheets
and finally nano-sheets aggregated around the irregular spherical micelles to form "sea urchin"-like assemblies. To the case of PEG
44
-
b
-PNBrG
12
after annealing in
n
-octanol at 140 ℃ for 4 h
it assembled to "dandelion"-like nanoparticles with similar formation processes to the "sea urchin"-like assemblies.
2
聚类肽N-硫代环内羧酸酐开环聚合溴苯基团自组装
PolypeptoidsN-thiocarboxyanhydridesRing-opening polymerizationBromophenyl groupSelf-assembly
Knight A S, Zhou E Y, Francis M B, Zuckermann R N. Adv Mater, 2015, 27(38): 5665-5691. doi:10.1002/adma.201500275http://dx.doi.org/10.1002/adma.201500275
Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R. Chem Rev, 2016, 116(4): 1753-1802. doi:10.1021/acs.chemrev.5b00201http://dx.doi.org/10.1021/acs.chemrev.5b00201
Chan B A, Xuan S, Li A, Simpson J M, Sternhagen G L, Yu T, Darvish O A, Jiang N, Zhang D. Biopolymers, 2018, 109(1): e23070. doi:10.1002/bip.23070http://dx.doi.org/10.1002/bip.23070
Sun Jing(孙静), Li Zhibo(李志波). Acta Polymerica Sinica(高分子学报), 2018, (1): 1-8. doi:10.11777/j.issn1000-3304.2018.17220http://dx.doi.org/10.11777/j.issn1000-3304.2018.17220
Tao Y, Wang Z, Tao Y. Biopolymers, 2019, 110(6): e23288. doi:10.1002/bip.23288http://dx.doi.org/10.1002/bip.23288
Birke A, Ling J, Barz M. Prog Polym Sci, 2018, 81: 163-208. doi:10.1016/j.progpolymsci.2018.01.002http://dx.doi.org/10.1016/j.progpolymsci.2018.01.002
Fang R, Pi J, Wei T, Ali A, Guo L. Polymers, 2021, 13(13): 2089. doi:10.3390/polym13132089http://dx.doi.org/10.3390/polym13132089
Zuckermann R N, Kerr J M, Kent S B H, Moos W H. J Am Chem Soc, 1992, 114(26): 10646-10647. doi:10.1021/ja00052a076http://dx.doi.org/10.1021/ja00052a076
Xuan S, Jiang X, Spencer R K, Li N K, Prendergast D, Balsara N P, Zuckermann R N. Proc Natl Acad Sci USA, 2019, 116(45): 22491-22499. doi:10.1073/pnas.1909992116http://dx.doi.org/10.1073/pnas.1909992116
Zhang D H, Lahasky S H, Guo L, Lee C U, Lavan M. Macromolecules, 2012, 45(15): 5833-5841. doi:10.1021/ma202319ghttp://dx.doi.org/10.1021/ma202319g
Luxenhofer R, Fetsch C, Grossmann A. J Polym Sci, Part A: Polym Chem, 2013, 51(13): 2731-2752. doi:10.1002/pola.26687http://dx.doi.org/10.1002/pola.26687
Secker C, Brosnan S M, Luxenhofer R, Schlaad H. Macromol Biosci, 2015, 15(7): 881-891. doi:10.1002/mabi.201500023http://dx.doi.org/10.1002/mabi.201500023
Tao X, Li M-H, Ling J. Eur Polym J, 2018, 109: 26-42. doi:10.1016/j.eurpolymj.2018.08.039http://dx.doi.org/10.1016/j.eurpolymj.2018.08.039
Zheng B, Bai T, Tao X, Ling J. Macromol Rapid Commun, 2021, 44(22): 2100453. doi:10.1002/marc.202100453http://dx.doi.org/10.1002/marc.202100453
Fetsch C, Grossmann A, Holz L, Nawroth J F, Luxenhofer R. Macromolecules, 2011, 44(17): 6746-6758. doi:10.1021/ma201015yhttp://dx.doi.org/10.1021/ma201015y
Borova S, Schlutt C, Nickel J, Luxenhofer R. Macromol Chem Phys, 2022, 223(3): 2100331. doi:10.1002/macp.202100331http://dx.doi.org/10.1002/macp.202100331
Guo L, Lahasky S H, Ghale K, Zhang D H. J Am Chem Soc, 2012, 134(22): 9163-9171. doi:10.1021/ja210842bhttp://dx.doi.org/10.1021/ja210842b
Chan B A, Xuan S T, Horton M, Zhang D H. Macromolecules, 2016, 49(6): 2002-2012. doi:10.1021/acs.macromol.5b02520http://dx.doi.org/10.1021/acs.macromol.5b02520
Li A, Lu L, Li X, He L L, Do C W, Garno J C, Zhang D H. Macromolecules, 2016, 49(4): 1163-1171. doi:10.1021/acs.macromol.5b02611http://dx.doi.org/10.1021/acs.macromol.5b02611
Salas-Ambrosio P, Tronnet A, Since M, Bourgeade-Delmas S, Stigliani J L, Vax A, Lecommandoux S, Dupuy B, Verhaeghe P, Bonduelle C. J Am Chem Soc, 2021, 143(10): 3697-3702. doi:10.1021/jacs.0c13231http://dx.doi.org/10.1021/jacs.0c13231
Salas-Ambrosio P, Tronnet A, Badreldin M, Reyes L, Since M, Bourgeade-Delmas S, Dupuy B, Verhaeghe P, Bonduelle C. Polym Chem, 2022, 13(5): 600-612. doi:10.1039/d1py01529jhttp://dx.doi.org/10.1039/d1py01529j
Fu X, Li Z, Wei J, Sun J, Li Z. Polym Chem, 2018, 9(37): 4617-4624. doi:10.1039/c8py00924dhttp://dx.doi.org/10.1039/c8py00924d
Wu Y, Zhou M, Chen K, Chen S, Xiao X, Ji Z, Zou J, Liu R. Chin Chem Lett, 2021, 32(5): 1675-1678. doi:10.1016/j.cclet.2021.02.039http://dx.doi.org/10.1016/j.cclet.2021.02.039
Chen K, Wu Y, Wu X, Zhou M, Zhou R, Wang J, Xiao X, Yuan Y, Liu R. Polym Chem, 2022, 13(3): 420-426. doi:10.1039/d1py01324fhttp://dx.doi.org/10.1039/d1py01324f
Zou J, Zhou M, Ji Z, Xiao X, Wu Y, Cui R, Deng S, Liu R. Polym Chem, 2022, 13(3): 388-394. doi:10.1039/d1py01413ghttp://dx.doi.org/10.1039/d1py01413g
Tao X, Zheng B, Kricheldorf H R, Ling J. J Polym Sci, Part A: Polym Chem, 2017, 55(3): 404-410. doi:10.1002/pola.28402http://dx.doi.org/10.1002/pola.28402
Tao X, Zheng B, Bai T, Li M-H, Ling J. Macromolecules, 2018, 51(12): 4494-4501. doi:10.1021/acs.macromol.8b00259http://dx.doi.org/10.1021/acs.macromol.8b00259
Zheng B, Bai T, Tao X, Schlaad H, Ling J. Biomacromolecules, 2018, 19(11): 4263-4269. doi:10.1021/acs.biomac.8b01119http://dx.doi.org/10.1021/acs.biomac.8b01119
Zheng Botuo(郑博拓), Tao Xinfeng(陶鑫峰), Ling Jun(凌君). Acta Polymerica Sinica(高分子学报), 2018, (1): 72-79. doi:10.11777/j.issn1000-3304.2018.17172http://dx.doi.org/10.11777/j.issn1000-3304.2018.17172
Zheng B, Bai T, Ling J, Sun J. Commun Chem, 2020, 3(1): 144. doi:10.1038/s42004-020-00393-yhttp://dx.doi.org/10.1038/s42004-020-00393-y
Hu Zujia(胡祖佳), Yan Shuting(颜舒婷), Qi Jiale(戚家乐), Tao Xinfeng(陶鑫峰), Lin Shaoliang(林绍梁). Acta Polymerica Sinica(高分子学报), 2021, 52(7): 708-716. doi:10.11777/j.issn1000-3304.2020.20284http://dx.doi.org/10.11777/j.issn1000-3304.2020.20284
Zheng B, Xu S, Ni X, Ling J. Biomacromolecules, 2021, 22(4): 1579-1589. doi:10.1021/acs.biomac.1c00016http://dx.doi.org/10.1021/acs.biomac.1c00016
Zhou P, Shen T, Chen W, Sun J, Ling J. Biomacromolecules, 2022, 23(4): 1757-1764. doi:10.1021/acs.biomac.2c00001http://dx.doi.org/10.1021/acs.biomac.2c00001
Zhou P, Shen T, Ling J. J Polym Sci, 2021, 59(23): 2946-2958. doi:10.1002/pol.20210507http://dx.doi.org/10.1002/pol.20210507
Zhao M. Biopolymers, 2021, 112(9): e23469. doi:10.1002/bip.23469http://dx.doi.org/10.1002/bip.23469
Zeng G, Qiu L, Wen T. Polym Crys, 2019, 2(3): e10065. doi:10.1002/pcr2.10065http://dx.doi.org/10.1002/pcr2.10065
Xuan S, Zuckermann R N. J Mater Chem B, 2020, 8(25): 5380-5394. doi:10.1039/d0tb00477dhttp://dx.doi.org/10.1039/d0tb00477d
Jiang N, Zhang D. Polymers, 2021, 13(18): 3131. doi:10.3390/polym13183131http://dx.doi.org/10.3390/polym13183131
Li Z, Cai B, Yang W, Chen C L. Chem Rev, 2021, 121(22): 14031-14087. doi:10.1021/acs.chemrev.1c00024http://dx.doi.org/10.1021/acs.chemrev.1c00024
Shi Z, Wei Y, Zhu C, Sun J, Li Z. Macromolecules, 2018, 51(16): 6344-6351. doi:10.1021/acs.macromol.8b00986http://dx.doi.org/10.1021/acs.macromol.8b00986
Sun J, Wang Z, Zhu C, Wang M, Shi Z, Wei Y, Fu X, Chen X, Zuckermann R N. P Natl Acad Sci, 2020, 117(50): 31639-31647. doi:10.1073/pnas.2011816117http://dx.doi.org/10.1073/pnas.2011816117
Ni Y, Sun J, Wei Y, Fu X, Zhu C, Li Z. Biomacromolecules, 2017, 18(10): 3367-3374. doi:10.1021/acs.biomac.7b01014http://dx.doi.org/10.1021/acs.biomac.7b01014
Jiang N, Yu T, Darvish O A, Qian S, Mkam Tsengam I K, John V, Zhang D. Macromolecules, 2019, 52(22): 8867-8877. doi:10.1021/acs.macromol.9b01546http://dx.doi.org/10.1021/acs.macromol.9b01546
Kang L, Chao A, Zhang M, Yu T, Wang J, Wang Q, Yu H, Jiang N, Zhang D. J Am Chem Soc, 2021, 143(15): 5890-5902. doi:10.1021/jacs.1c01088http://dx.doi.org/10.1021/jacs.1c01088
Bai T, Zhou P, Li Z, Zheng B, Ling J. Macromolecules, 2021, 54(14): 6691-6697. doi:10.1021/acs.macromol.1c00371http://dx.doi.org/10.1021/acs.macromol.1c00371
Tao X, Deng C, Ling J. Macromol Rapid Commun, 2014, 35(9): 875-881. doi:10.1002/marc.201470029http://dx.doi.org/10.1002/marc.201470029
Tao X F, Deng Y W, Shen Z Q, Ling J. Macromolecules, 2014, 47(18): 6173-6180. doi:10.1021/ma501131thttp://dx.doi.org/10.1021/ma501131t
Wei Y, Tian J, Zhang Z, Zhu C, Sun J, Li Z. Macromolecules, 2019, 52(4): 1546-1556. doi:10.1021/acs.macromol.8b02230http://dx.doi.org/10.1021/acs.macromol.8b02230
0
Views
121
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution