Wang Yuan-yuan,Qv Chun-jing,Ma Zhe.Melt Memory Effect in Crystallization of 1-Butene/4-(3-Butenyl)toluene Copolymers[J].ACTA POLYMERICA SINICA,2022,53(12):1534-1542.
Wang Yuan-yuan,Qv Chun-jing,Ma Zhe.Melt Memory Effect in Crystallization of 1-Butene/4-(3-Butenyl)toluene Copolymers[J].ACTA POLYMERICA SINICA,2022,53(12):1534-1542. DOI: 10.11777/j.issn1000-3304.2022.22204.
Melt Memory Effect in Crystallization of 1-Butene/4-(3-Butenyl)toluene Copolymers
The macromolecules exhibit the multiscale aggregation features and consequently show the unique memory effect for subsequent re-crystallization. The origin of memory effect was usually related to the survival of crystallization-associated structures after melting
which has a close correlation with molecular architecture. In this work
a series of 1-butene/4-(3-butenyl)toluene (PBBT) copolymers were prepared by dimethylpyridine amine hafnium/[Ph
3
C
]
[B(C
6
F
5
)
4
]
catalyst system to introduce the steric 4-(3-butenyl)toluene co-units with
π
-
π
interaction into the poly(1-butene). Differential scanning calorimetry was employed to systematically study the influence of melt temperature
melting time and crystallization temperature on memory effect of PBBT copolymers. The results showed that the presence of 4-(3-butenyl)toluene co-units induced the occurrence of melt memory effect
which accelerated re-crystallization kinetics without changing the formed crystal modificati
on of tetragonal phase. The triggered memory effect exhibits the maximum strength within the intermediate melt temperatures. Interestingly
as the melting duration increased
the exothermic peak value of cooling crystallization in PBBT copolymers moved to high temperature
demonstrating the melting-enhanced strength of memory effect. This development behavior of memory effect in PBBT is significantly different from the customary decaying evolution reported previously. Moreover
it was found that melt memory effect of PBBT copolymers is also strongly dependent on the crystallization temperature and its strength can be enhanced by lowering crystallization temperature.
Hu Wenbin(胡文兵). Principles of Polymer Crystallization(高分子结晶学原理). Beijing(北京): Chemical Industry Press(化学工业出版社), 2013. 1-15. doi:10.1007/978-3-7091-0670-9_10http://dx.doi.org/10.1007/978-3-7091-0670-9_10
Sangroniz L, Cavallo D, Muller A J. Macromolecules, 2020, 53(12): 4581-4604. doi:10.1021/acs.macromol.0c00751http://dx.doi.org/10.1021/acs.macromol.0c00751
He L, Wang B, Yang F, Li Y, Ma Z. Macromolecules, 2016, 49(17): 6578-6589. doi:10.1021/acs.macromol.6b01457http://dx.doi.org/10.1021/acs.macromol.6b01457
Reid B O, Vadlamudi M, Mamun A, Janani H, Gao H, Hu W, Alamo R G. Macromolecules, 2013, 46(16): 6485-6497. doi:10.1021/ma400839dhttp://dx.doi.org/10.1021/ma400839d
Mamun A, Umemoto S, Okui N, Ishihara N. Macromolecules, 2007, 40(17): 6296-6303. doi:10.1021/ma070963jhttp://dx.doi.org/10.1021/ma070963j
Liao Y, Liu L, Ma Z, Li Y. Macromolecules, 2020, 53(6): 2088-2100. doi:10.1021/acs.macromol.0c00078http://dx.doi.org/10.1021/acs.macromol.0c00078
Su F, Li X, Zhou W, Zhu S, Ji Y, Wang Z, Qi Z, Li L. Macromolecules, 2013, 46(18): 7399-7405. doi:10.1021/ma400952rhttp://dx.doi.org/10.1021/ma400952r
Sangroniz L, Alamo R G, Cavallo D, Santamaria A, Muller A J, Alegria A. Macromolecules, 2018, 51(10): 3663-3671. doi:10.1021/acs.macromol.8b00708http://dx.doi.org/10.1021/acs.macromol.8b00708
Sangroniz L, Barbieri F, Cavallo D, Santamaria A, Alamo R G, Müller A J. Eur Polym J, 2018, 99: 495-503. doi:10.1016/j.eurpolymj.2018.01.009http://dx.doi.org/10.1016/j.eurpolymj.2018.01.009
Sangroniz L, Cavallo D, Santamaria A, Müller A J, Alamo R G. Macromolecules, 2017, 50(2): 642-651. doi:10.1021/acs.macromol.6b02392http://dx.doi.org/10.1021/acs.macromol.6b02392
Chen X, Qu C, Alamo R G. Polym Int, 2019, 68(2): 248-256. doi:10.1002/pi.5586http://dx.doi.org/10.1002/pi.5586
Marxsen S F, Alamo R G. Polymer, 2019, 168: 168-177. doi:10.1016/j.polymer.2019.02.030http://dx.doi.org/10.1016/j.polymer.2019.02.030
Mamun A, Chen X, Alamo R G. Macromolecules, 2014, 47(22): 7958-7970. doi:10.1021/ma501937chttp://dx.doi.org/10.1021/ma501937c
Chen X, Wignall G D, He L, Lopez B C, Alamo R G. Macromolecules, 2017, 50(11): 4406-4414. doi:10.1021/acs.macromol.7b00357http://dx.doi.org/10.1021/acs.macromol.7b00357
Chen X, Lopez B C, Zeng Y, Alamo R G. Polymer, 2018, 148: 181-190. doi:10.1016/j.polymer.2018.06.032http://dx.doi.org/10.1016/j.polymer.2018.06.032
Ren M, Chen X, Sang Y, Alamo R G. Ind Eng Chem Res, 2020, 59(43): 19260-19271. doi:10.1021/acs.iecr.0c03647http://dx.doi.org/10.1021/acs.iecr.0c03647
Gao H, Vadlamudi M, Alamo R G, Hu W. Macromolecules, 2013, 46(16): 6498-6506. doi:10.1021/ma400842hhttp://dx.doi.org/10.1021/ma400842h
Ergoz E, Fatou J G, Mandelkern L. Macromolecules, 2002, 5(2): 147-157
Hafele A, Heck B, Hippler T, Kawai T, Kohn P, Strobl G. Eur Phys J E, 2005, 16(2): 217-224
Sangroniz L, Sangroniz A, Meabe L, Basterretxea A, Sardon H, Cavallo D, Müller A J. Macromolecules, 2020, 53(12): 4874-4881. doi:10.1021/acs.macromol.0c00751http://dx.doi.org/10.1021/acs.macromol.0c00751
Pérez R A, Córdova M E, López J V, Hoskins J N, Zhang B, Grayson S M, Müller A J. React Funct Polym, 2014, 80: 71-82. doi:10.1016/j.reactfunctpolym.2013.10.013http://dx.doi.org/10.1016/j.reactfunctpolym.2013.10.013
Wang M, Li J, Shi G, Liu G, Müller A J, Wang D. Macromolecules, 2021, 54(8): 3810-3821. doi:10.1021/acs.macromol.1c00485http://dx.doi.org/10.1021/acs.macromol.1c00485
Qv C, Li W, Zhao R, Ma Z. Chinese J Polym Sci, 2022, 40(6): 576-583. doi:10.1007/s10118-022-2660-1http://dx.doi.org/10.1007/s10118-022-2660-1
Shang Ruining(商睿凝), Pan Li(潘莉), Li Yuesheng(李悦生). Acta Polymerica Sinica(高分子学报), 2019, 50(11): 1187-1195. doi:10.11777/j.issn1000-3304.2019.19081http://dx.doi.org/10.11777/j.issn1000-3304.2019.19081
Meng Qingqing(孟晴晴), Wang Bin(王彬), Pan Li(潘莉), Li Yuesheng(李悦生), Ma Zhe(马哲). Acta Polymerica Sinica(高分子学报), 2017, (11):1762-1772. doi:10.11777/j.issn1000-3304.2017.17028http://dx.doi.org/10.11777/j.issn1000-3304.2017.17028
Wang X, Wang Y, Shi X, Liu J, Chen C, Li Y. Macromolecules, 2014, 47(2): 552-559. doi:10.1021/ma4022696http://dx.doi.org/10.1021/ma4022696
Wang L, Wan D, Zhang Z, Liu F, Xing H, Wang Y, Tang T. Macromolecules, 2011, 44(11): 4167-4179. doi:10.1021/ma200604yhttp://dx.doi.org/10.1021/ma200604y
Lou Y, Liao Y, Pan L, Wang B, Li Y, Ma Z. Chinese J Polym Sci, 2018, 36(11): 1269-1276. doi:10.1007/s10118-018-2135-6http://dx.doi.org/10.1007/s10118-018-2135-6
Fillon B, Wittmann J C, Lotz B, Thierry A. J Polym Sci Polm Phys, 1993, 31(10): 1383-1393. doi:10.1002/polb.1993.090311013http://dx.doi.org/10.1002/polb.1993.090311013
Study on Crystallization Kinetics of Crosslinked Poly(ε-caprolactone)/Styrene-acrylonitrile Copolymer Blends Prepared through Irradiation by Electron Beam
Optical Inversion Characteristics of PA56 Spherulites
Research Progress on Polymer Crystallization Confined within Nano-porous AAO Templates
Influence of Shear Flow on the Crystallization Kinetics of Isotactic Polypropylene in Nucleation and Crystal Growth Processes
Related Author
Cui Xu
Jia Wang
Juan Zhang
Zhi-gang Wang
Xue-hui Wang
Yue Lai
Yu Wang
Li-li Wang
Related Institution
CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences
University of Chinese Academy of Sciences
Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University
College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen University