浏览全部资源
扫码关注微信
1.吉林大学 超分子结构与材料国家重点实验室 化学学院 长春 130012
2.化学工程国家重点实验室 浙江大学化学系 杭州 310027
Wen-ke Zhang, E-mail: zhangwk@jlu.edu.cn
Wen-ke Zhang, E-mail: zhangwk@jlu.edu.cn
Published:20 October 2022,
Published Online:29 July 2022,
Received:28 May 2022,
Accepted:22 June 2022
移动端阅览
李占东,鞠华强,黄飞鹤等.聚轮烷互锁结构的单分子力化学研究[J].高分子学报,2022,53(10):1279-1286.
Li Zhan-dong,Ju Hua-qiang,Huang Fei-he,et al.Single-Molecule Mechanochemistry of an Interlocked Polyrotaxanes[J].ACTA POLYMERICA SINICA,2022,53(10):1279-1286.
李占东,鞠华强,黄飞鹤等.聚轮烷互锁结构的单分子力化学研究[J].高分子学报,2022,53(10):1279-1286. DOI: 10.11777/j.issn1000-3304.2022.22209.
Li Zhan-dong,Ju Hua-qiang,Huang Fei-he,et al.Single-Molecule Mechanochemistry of an Interlocked Polyrotaxanes[J].ACTA POLYMERICA SINICA,2022,53(10):1279-1286. DOI: 10.11777/j.issn1000-3304.2022.22209.
基于冠醚和二级铵盐的轮烷体系是一类重要的超分子机器. 理解外力作用下该轮烷体系的解离及结合机制,将有助于开发基于轮烷体系的力学响应材料. 基于原子力显微镜(AFM)的单分子力谱(SMFS)是研究这种超分子弱相互作用的有效方法. 为了提升实验效率并降低界面非特异性相互作用对单分子力谱实验的干扰,通过合理的分子设计和聚合方法,将单体轮烷结构单元聚合,形成轮/轴首尾相连的聚互锁结构. 通过将该聚合物桥联于AFM针尖与固体基片之间,并对该聚合物进行恒速拉伸操纵,实现了聚轮烷互锁结构的动态打开与形成过程的原位观测. 实验结果显示,外力作用下聚轮烷结构中的重复单元依次打开,产生了具有锯齿状平台的力学信号,该锯齿状信号的力值体现出对拉伸过程中力加载速率的依赖性,随着力加载速率从600 pN/s升高至90000 pN/s,其力值从~84 pN升高至142 pN. 往复拉伸实验结果显示,该聚轮烷结构的形成是一个自发、可逆的过程,且结合力值随着松弛速率的增加而降低. 通过结合动态力学谱及相关动力学模型,得到该轮烷体系的结合速率常数为1.3×10
4
s
-1
,解离速率常数为0.26 s
-1
,平衡态自由能为-34.6 kJ/mol,并绘制出其解离与结合的能量路径. 本研究深化了对基于冠醚和二级铵盐的轮烷体系力学稳定性及结合与解离机制的认识,为基于轮烷的材料体系力学性质调控及理性设计提供了重要参考.
Rotaxane system that is based on benzo-21-crown-7 (B21C7) and dialkylammonium salts (DAAs) is one of the important molecular machines. Understanding the mechanism of force-induced unbinding and rebinding of such rotaxane system will facilitate the development of rotaxane-based force-responsive materials. In this paper
we have investigated the mechanochemistry and unbinding-rebinding process of a tandem polyrotaxane with B21C7/DAAs repeat units. The binding mode and binding strength have been also revealed. Through the atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS) method
we are able to get the unbinding information of each rotaxane unit on the whole tandem chain and quantify the strength of the host-guest complexation. A force plateau containing sawtooth peaks was observed
which corresponds to the sequential unbinding of the B21C7/DAAs unit
and the peak force was found in the range of 84-142 pN depending on the force loading rate. Consecutive stretching-relaxation experiments reveal that after detaching from the binding point and sliding along the axle
crown ether moieties can travel back to their original binding sites once the chain is relaxed. The loading rate dependence tells us that the unbinding force increases linearly with the increase of the force loading rate
whereas the rebinding force decreases linearly with the increase of the force loading rate. Furthermore
we can get the kinetic parameters governi
ng the dynamic motion of the polyrotaxane with a dissociation rate constant of 0.26 s
-1
and an association rate constant of 1.3×10
4
s
-1
. With these kinetic parameters
the potential energy landscape for the unbinding/rebinding of rotaxane was drawn with an equilibrium free energy of -34.6 kJ/mol. These results deepen the understanding of B21C7/DAAs system
and are helpful for the rational design of functional materials with rotaxane molecular machine building blocks. The established method can also be applied in other rotaxane systems.
聚轮烷超分子材料单分子力谱力化学
PolyrotaxanesSupramolecular materialsSingle molecule force spectroscopyMechanochemistry
Kinbara K, Aida T. Chem Rev, 2005, 105: 1377-1400. doi:10.1021/cr030071rhttp://dx.doi.org/10.1021/cr030071r
Schliwa M, Woehlke G. Nature, 2003, 422: 759-765. doi:10.1038/nature01601http://dx.doi.org/10.1038/nature01601
Cui S, Yu J, Kühner F, Schulten K, Gaub H E. J Am Chem Soc, 2007, 129: 14710-14716. doi:10.1021/ja074776chttp://dx.doi.org/10.1021/ja074776c
Guedes A F, Carvalho F A, Malho I, Lousada N, Sargento L, Santos N C. Nat Nanotechnol, 2016, 11: 687-692. doi:10.1038/nnano.2016.52http://dx.doi.org/10.1038/nnano.2016.52
Li H, Zhang W, Xu W, Zhang X. Macromolecules, 2000, 33: 465-469. doi:10.1021/ma990878ehttp://dx.doi.org/10.1021/ma990878e
Zhang W(张薇), Hou Jue(侯矍), Li Nan(李楠), Zhang Wenke(张文科). Acta Polymercia Sinica(高分子学报), 2021, 52(11): 1523-1546. doi:10.11777/j.issn1000-3304.2020.20266http://dx.doi.org/10.11777/j.issn1000-3304.2020.20266
Rief M, Oesterhelt F, Heymann B, Gaub H E. Science 1997, 275 1295-1297
Hoffmann T, Dougan L. Chem Soc Rev, 2012, 41: 4781-4796. doi:10.1039/c2cs35033ehttp://dx.doi.org/10.1039/c2cs35033e
Li I T S, Walker G C. Acc Chem Res 2012, 45: 2011-2021. doi:10.1021/ar200285hhttp://dx.doi.org/10.1021/ar200285h
Mai D J, Schroeder C M. ACS Macro Lett, 2020, 9: 1332-1341. doi:10.1021/acsmacrolett.0c00523http://dx.doi.org/10.1021/acsmacrolett.0c00523
Bao Y, Luo Z, Cui S. Chem Soc Rev 2020, 49: 2799-2827. doi:10.1039/c9cs00855ahttp://dx.doi.org/10.1039/c9cs00855a
Zhang W, Zhang X. Prog Polym Sci 2003, 28: 1271-1295. doi:10.1016/s0079-6700(03)00046-7http://dx.doi.org/10.1016/s0079-6700(03)00046-7
Liu N, Zhang W Z. ChemPhysChem, 2012, 13: 2238-2256. doi:10.1002/cphc.201200154http://dx.doi.org/10.1002/cphc.201200154
Song Y, Ma Z, Zhang W. Macromolecules, 2022, 55: 4177-4199. doi:10.1021/acs.macromol.2c00076http://dx.doi.org/10.1021/acs.macromol.2c00076
Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E. Science, 1997, 276: 1109-1112. doi:10.1126/science.276.5315.1109http://dx.doi.org/10.1126/science.276.5315.1109
Neuman K C, Nagy A. Nat Methods, 2008, 5: 491-505. doi:10.1038/nmeth.1218http://dx.doi.org/10.1038/nmeth.1218
Kienberger F, Ebner A, Gruber H J, Hinterdorfer P. Acc Chem Res, 2006, 39: 29-36. doi:10.1021/ar050084mhttp://dx.doi.org/10.1021/ar050084m
Janshoff A, Neitzert M, Oberdörfer Y, Fuchs H. Angew Chem Int Ed, 2000, 39: 3212-3237. doi:10.1002/1521-3773(20000915)39:18<3212::aid-anie3212>3.0.co;2-xhttp://dx.doi.org/10.1002/1521-3773(20000915)39:18<3212::aid-anie3212>3.0.co;2-x
Van Quaethem A, Lussis P, Leigh D A, Duwez A S, Fustin C A. Chem Sci, 2014, 5: 1449-1452. doi:10.1039/c3sc53113ahttp://dx.doi.org/10.1039/c3sc53113a
Janke M, Rudzevich Y, Molokanova O, Metzroth T, Mey I, Diezemann G, Marszalek P E, Gauss J, Böhmer V, Janshoff A. Nat Nanotechnol, 2009, 4: 225-229. doi:10.1038/nnano.2008.416http://dx.doi.org/10.1038/nnano.2008.416
Sluysmans D, Hubert S, Bruns C J, Zhu Z, Stoddart J F, Duwez A S. Nat Nanotechnol, 2018, 13: 209-213. doi:10.1038/s41565-017-0033-7http://dx.doi.org/10.1038/s41565-017-0033-7
Sluysmans D, Devaux F, Bruns C J, Stoddart J F, Duwez A S. Proc Natl Acad Sci USA, 2018, 115: 9362-9366. doi:10.1073/pnas.1712790115http://dx.doi.org/10.1073/pnas.1712790115
Lussis P, Svaldo-Lanero T, Bertocco A, Fustin C A, Leigh D A, Duwez A S. Nat Nanotechnol, 2011, 6: 553-557. doi:10.1038/nnano.2011.132http://dx.doi.org/10.1038/nnano.2011.132
Rayment I, Rypniewski W R, Schmidt-Bäse K, Smith R, Tomchick D R, Benning M M, Winkelmann D A, Wesenberg G, Holden H M. Science, 1993, 261: 50-58. doi:10.1126/science.8316857http://dx.doi.org/10.1126/science.8316857
Goldstein L S. Proc Natl Acad Sci, 2001, 98: 6999-7003. doi:10.1073/pnas.111145298http://dx.doi.org/10.1073/pnas.111145298
Astumian R D, Bier M. Biophys J, 1996, 70: 637-653. doi:10.1016/s0006-3495(96)79605-4http://dx.doi.org/10.1016/s0006-3495(96)79605-4
Xing H, Li Z, Wang W, Liu P, Liu J, Song Y, Wu Z L, Zhang W, Huang F. CCS Chem, 2020, 2: 513-523. doi:10.31635/ccschem.019.20190043http://dx.doi.org/10.31635/ccschem.019.20190043
Chung J, Kushner A M, Weisman A C, Guan Z. Nat Mater, 2014, 13: 1055-1062. doi:10.1038/nmat4090http://dx.doi.org/10.1038/nmat4090
Song C, Wang Z G, Ding B. Small, 2013, 9: 2382-2392. doi:10.1002/smll.201300824http://dx.doi.org/10.1002/smll.201300824
Xue M, Yang Y, Chi X, Yan X, Huang F. Chem Rev, 2015, 115: 7398-7501. doi:10.1021/cr5005869http://dx.doi.org/10.1021/cr5005869
Hashidzume A, Yamaguchi H, Harada A. Eur J Org Chem, 2019, 2019: 3344-3357. doi:10.1002/ejoc.201900090http://dx.doi.org/10.1002/ejoc.201900090
Zhang W, Zhang X. Prog Polym Sci, 2003, 28: 1271-1295. doi:10.1016/s0079-6700(03)00046-7http://dx.doi.org/10.1016/s0079-6700(03)00046-7
Florin E L, Pralle A, Stelzer E, Hörber J. Appl Phys A, 1998, 66: S75-S78. doi:10.1007/s003390051103http://dx.doi.org/10.1007/s003390051103
Liu K, Song Y, Feng W, Liu N, Zhang W, Zhang X. J Am Chem Soc, 2011, 133: 3226-3229. doi:10.1021/ja108022hhttp://dx.doi.org/10.1021/ja108022h
Hugel T, Rief M, Seitz M, Gaub H E, Netz R R. Phys Rev Lett, 2005, 94: 048301. doi:10.1103/physrevlett.94.048301http://dx.doi.org/10.1103/physrevlett.94.048301
Evans E, Ritchie K. Biophys J, 1997, 72: 1541-1555. doi:10.1016/s0006-3495(97)78802-7http://dx.doi.org/10.1016/s0006-3495(97)78802-7
Bell G I. Science, 1978, 200: 618-627. doi:10.1126/science.347575http://dx.doi.org/10.1126/science.347575
Diezemann G, Janshoff A. J Chem Phys, 2008, 129: 084904. doi:10.1063/1.2968543http://dx.doi.org/10.1063/1.2968543
Yao R X, Shi J J, Li K H, Liu X, Zhang H Y, Wang M, Zhang W K. Chinese J Polym Sci, 2022. doi: 10.1007/s10118-022-2797-yhttp://dx.doi.org/10.1007/s10118-022-2797-y
0
Views
194
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution