浏览全部资源
扫码关注微信
1.中国人民大学化学系 北京 100872
2.中国科学院化学研究所 北京 100190
3.温州大学化学与材料工程学院 温州 325035
4.生命有机磷化学及化学生物学教育部重点实验室 清华大学化学系 北京 100084
Fen Wu, E-mail: wufen@wzu.edu.cn
Li-jin Xu, E-mail: 20050062@ruc.edu.cn
Published:20 December 2022,
Received:19 August 2022,
Accepted:23 September 2022
移动端阅览
叶建涵,吴芬,董原辰等.DNA-有机小分子复合结构的合成及应用研究[J].高分子学报,2022,53(12):1421-1428.
Ye Jian-han,Wu Fen,Dong Yuan-chen,et al.Synthesis and Application of DNA-Organic Small Molecule Complex[J].ACTA POLYMERICA SINICA,2022,53(12):1421-1428.
叶建涵,吴芬,董原辰等.DNA-有机小分子复合结构的合成及应用研究[J].高分子学报,2022,53(12):1421-1428. DOI: 10.11777/j.issn1000-3304.2022.22281.
Ye Jian-han,Wu Fen,Dong Yuan-chen,et al.Synthesis and Application of DNA-Organic Small Molecule Complex[J].ACTA POLYMERICA SINICA,2022,53(12):1421-1428. DOI: 10.11777/j.issn1000-3304.2022.22281.
探索并比较了DNA与有机小分子化合物在固相合成和液相偶联中的反应效率,利用DNA固相合成的方法高效的合成了多种DNA-有机小分子的复合结构,通过基质辅助激光解吸-飞行时间质谱(MALDI-TOF)对其结构和分子量进行了表征;并利用透射电子显微镜和动态光散射对DNA-芘复合结构在水相中的组装行为进行了初步的探索,其组装结构有望应用于药物的包裹释放研究.
We explore and compare the reaction efficiency of DNA with organic small molecule compounds in solid-phase synthesis and solution coupling. Multiple DNA-organic small molecule complex structures have been synthesized efficiently by the method of DNA solid-phase synthesis
whose structures and molecular weights are characterized by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF). Then
the assembling behaviors of DNA-pyrene complex in aqueous phase have been explored by transmission electron microscopy and dynamic light scattering
whose assemblies are expected to be applied to the study of drug package release.
DNA固相合成液相偶联自组装
DNASolid-phase synthesisSolution couplingAssembly
Seeman N C. Nature, 2003, 421(6921): 427-431. doi:10.1038/nature01406http://dx.doi.org/10.1038/nature01406
Rothemund P W K. Nature, 2006, 440(7082): 297-302. doi:10.1038/nature04586http://dx.doi.org/10.1038/nature04586
Douglas S M, Dietz H, Liedl T, Högberg B, Graf F, Shih W M. Nature, 2009, 459(7245): 414-418. doi:10.1038/nature08016http://dx.doi.org/10.1038/nature08016
Han D R, Pal S, Nangreave J, Deng Z T, Liu Y, Yan H. Science, 2011, 332(6027): 342-346. doi:10.1126/science.1202998http://dx.doi.org/10.1126/science.1202998
Yan H, Zhang X P, Shen Z Y, Seeman N C. Nature, 2002, 415(6867): 62-65. doi:10.1038/415062ahttp://dx.doi.org/10.1038/415062a
Krishnan Y, Simmel F C. Angew Chem Int Ed, 2011, 50(14): 3124-3156. doi:10.1002/anie.200907223http://dx.doi.org/10.1002/anie.200907223
Douglas S M, Bachelet I, Church G M. Science, 2012, 335(6070): 831-834. doi:10.1126/science.1214081http://dx.doi.org/10.1126/science.1214081
Kahn J S, Hu Y W, Willner I. Acc Chem Res, 2017, 50(4): 680-690. doi:10.1021/acs.accounts.6b00542http://dx.doi.org/10.1021/acs.accounts.6b00542
Shao Y, Jia H Y, Cao T Y, Liu D S. Acc Chem Res, 2017, 50(4): 659-668. doi:10.1021/acs.accounts.6b00524http://dx.doi.org/10.1021/acs.accounts.6b00524
Wang D, Hu Y, Liu P F, Luo D. Acc Chem Res, 2017, 50(4): 733-739. doi:10.1021/acs.accounts.6b00581http://dx.doi.org/10.1021/acs.accounts.6b00581
Wu F, Zhao Z Y, Chen C, Cao T Y, Li C, Shao Y, Zhang Y Y, Qiu D, Shi Q, Fan Q H, Liu D S. Small, 2018, 14(10), Doi: 10.1002/smll.201703426http://dx.doi.org/10.1002/smll.201703426
Khajouei S, Ravan H, Ebrahimi A. Adv Colloid Interface Sci, 2020, 275: 102060. doi:10.1016/j.cis.2019.102060http://dx.doi.org/10.1016/j.cis.2019.102060
Li F, Tang J P, Geng J H, Luo D, Yang D Y. Prog Polym Sci, 2019, 98: 101163. doi:10.1016/j.progpolymsci.2019.101163http://dx.doi.org/10.1016/j.progpolymsci.2019.101163
Li Y J, Zhu C Y, Dong Y C, Liu D S. Polymer, 2020, 210: 122993. doi:10.1016/j.polymer.2020.122993http://dx.doi.org/10.1016/j.polymer.2020.122993
Shi J Z, Shi Z W, Dong Y C, Wu F, Liu D S. ACS Appl Bio Mater, 2020, 3(5): 2827-2837. doi:10.1021/acsabm.0c00081http://dx.doi.org/10.1021/acsabm.0c00081
Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature, 1996, 382(6592): 607-609. doi:10.1038/382607a0http://dx.doi.org/10.1038/382607a0
Saccà B, Niemeyer C M. Chem Soc Rev, 2011, 40(12): 5910-5921. doi:10.1039/c1cs15212bhttp://dx.doi.org/10.1039/c1cs15212b
Vieregg J R, Lueckheide M, Marciel A B, Leon L, Bologna A J, Rivera J R, Tirrell M V. J Am Chem Soc, 2018, 140(5): 1632-1638. doi:10.1021/jacs.7b03567http://dx.doi.org/10.1021/jacs.7b03567
Cui C Z, Park D H, Ahn D J. Adv Mater, 2020, 32(51): e2002213. doi:10.1002/adma.202002213http://dx.doi.org/10.1002/adma.202002213
Schnitzler T, Herrmann A. Acc Chem Res, 2012, 45(9): 1419-1430. doi:10.1021/ar200211ahttp://dx.doi.org/10.1021/ar200211a
Albert S K, Golla M, Krishnan N, Perumal D, Varghese R. Acc Chem Res, 2020, 53(11): 2668-2679. doi:10.1021/acs.accounts.0c00492http://dx.doi.org/10.1021/acs.accounts.0c00492
Whitfield C J, Zhang M Z, Winterwerber P, Wu Y Z, Ng D Y W, Weil T. Chem Rev, 2021, 121(18): 11030-11084. doi:10.1021/acs.chemrev.0c01074http://dx.doi.org/10.1021/acs.chemrev.0c01074
Alemdaroglu F E, Alemdaroglu N C, Langguth P, Herrmann A. Adv Mater, 2008, 20(5): 899-902. doi:10.1002/adma.200700866http://dx.doi.org/10.1002/adma.200700866
Kwak M, Herrmann A. Chem Soc Rev, 2011, 40(12): 5745-5755. doi:10.1039/c1cs15138jhttp://dx.doi.org/10.1039/c1cs15138j
Patwa A, Gissot A, Bestel I, Barthélémy P. Chem Soc Rev, 2011, 40(12): 5844-5854. doi:10.1039/c1cs15038chttp://dx.doi.org/10.1039/c1cs15038c
Chidchob P, Sleiman H F. Curr Opin Chem Biol, 2018, 46: 63-70. doi:10.1016/j.cbpa.2018.04.012http://dx.doi.org/10.1016/j.cbpa.2018.04.012
Ge Z L, Gu H Z, Li Q, Fan C H. J Am Chem Soc, 2018, 140(51): 17808-17819. doi:10.1021/jacs.8b10529http://dx.doi.org/10.1021/jacs.8b10529
Jia F, Li H, Chen R H, Zhang K. Bioconjugate Chem, 2019, 30(7): 1880-1888. doi:10.1021/acs.bioconjchem.9b00067http://dx.doi.org/10.1021/acs.bioconjchem.9b00067
Madsen M, Gothelf K V. Chem Rev, 2019, 119(10): 6384-6458. doi:10.1021/acs.chemrev.8b00570http://dx.doi.org/10.1021/acs.chemrev.8b00570
Zhao Z Y, Dong Y C, Duan Z Z, Jin D, Yuan W, Liu D S. Aggregate, 2021, 2(4): e95. doi:10.1002/agt2.95http://dx.doi.org/10.1002/agt2.95
Ding K, Alemdaroglu F, Börsch M, Berger R, Herrmann A. Angew Chem Int Ed, 2007, 46(7): 1172-1175. doi:10.1002/anie.200603064http://dx.doi.org/10.1002/anie.200603064
Chien M P, Rush A M, Thompson M P, Gianneschi N C. Angew Chem Int Ed Engl, 2010, 49(30): 5076-5080. doi:10.1002/anie.201000265http://dx.doi.org/10.1002/anie.201000265
Wang L Y, Feng Y, Yang Z Q, He Y M, Fan Q H, Liu D S. Chem Commun (Camb), 2012, 48(31): 3715-3717. doi:10.1039/c2cc30776fhttp://dx.doi.org/10.1039/c2cc30776f
Zhao Z Y, Wang L Y, Liu Y, Yang Z Q, He Y M, Li Z B, Fan Q H, Liu D S. Chem Commun (Camb), 2012, 48(78): 9753-9755. doi:10.1039/c2cc33708hhttp://dx.doi.org/10.1039/c2cc33708h
Wu F, Song Y S, Zhao Z Y, Zhang S S, Yang Z Q, Li Z B, Li M, Fan Q H, Liu D S. Macromolecules, 2015, 48(20): 7550-7556. doi:10.1021/acs.macromol.5b01786http://dx.doi.org/10.1021/acs.macromol.5b01786
Wu F, Zhang Y Y, Yang Z Q. Chin J Chem, 2015, 33(5): 511-516. doi:10.1002/cjoc.201400846http://dx.doi.org/10.1002/cjoc.201400846
Kim C J, Hu X L, Park S J. J Am Chem Soc, 2016, 138(45): 14941-14947. doi:10.1021/jacs.6b07985http://dx.doi.org/10.1021/jacs.6b07985
Du T, Yuan W, Zhao Z Y, Liu S M. Chem Commun (Camb), 2019, 55(25): 3658-3661. doi:10.1039/c9cc00406hhttp://dx.doi.org/10.1039/c9cc00406h
He H P, Zhou Y, Liang F, Li D Q, Wu J J, Yang L, Zhou X, Zhang X L, Cao X P. Bioorg Med Chem, 2006, 14(4): 1068-1077. doi:10.1016/j.bmc.2005.09.041http://dx.doi.org/10.1016/j.bmc.2005.09.041
Tian Q, Bagheri Y, Keshri P, Wu R, Ren K W, Yu Q K, Zhao B, You M X. Chem Sci, 2020, 12(7): 2629-2634. doi:10.1039/d0sc06630chttp://dx.doi.org/10.1039/d0sc06630c
Li J, Xun K Y, Pei K, Liu X J, Peng X Y, Du Y L, Qiu L P, Tan W H. J Am Chem Soc, 2019, 141(45): 18013-18020. doi:10.1021/jacs.9b04725http://dx.doi.org/10.1021/jacs.9b04725
You M X, Lyu Y F, Han D, Qiu L P, Liu Q L, Chen T, Wu C S, Peng L, Zhang L Q, Bao G, Tan W H. Nat Nanotechnol, 2017, 12(5): 453-459. doi:10.1038/nnano.2017.23http://dx.doi.org/10.1038/nnano.2017.23
He Q Y, Liu Y F, Li K, Wu Y W, Wang T, Tan Y F, Jiang T, Liu X Q, Liu Z B. Biomater Sci, 2021, 9(20): 6691-6717. doi:10.1039/d1bm01057chttp://dx.doi.org/10.1039/d1bm01057c
Dong Y C, Liu D S, Yang Z Q. Methods, 2014, 67(2): 116-122. doi:10.1016/j.ymeth.2013.11.004http://dx.doi.org/10.1016/j.ymeth.2013.11.004
Caruthers M H. Acc Chem Res, 1991, 24(9): 278-284. doi:10.1021/ar00009a005http://dx.doi.org/10.1021/ar00009a005
Jäschke A, Fürste J P, Nordhoff E, Hillenkamp F, Cech D, Erdmann V A. Nucleic Acids Res, 1994, 22(22): 4810-4817. doi:10.1093/nar/22.22.4810http://dx.doi.org/10.1093/nar/22.22.4810
Jeong J H, Kim S W, Park T G. Bioconjugate Chem, 2003, 14(2): 473-479. doi:10.1021/bc025632khttp://dx.doi.org/10.1021/bc025632k
Li Z, Zhang Y, Fullhart P, Mirkin C A. Nano Lett, 2004, 4(6): 1055-1058. doi:10.1021/nl049628ohttp://dx.doi.org/10.1021/nl049628o
Teixeira F, Jr Rigler P, Vebert-Nardin C. Chem Commun (Camb), 2007, (11): 1130-1132. doi:10.1039/b617109ehttp://dx.doi.org/10.1039/b617109e
Kharkar P M, Kiick K L, Kloxin A M. Polym Chem, 2015, 6(31): 5565-5574. doi:10.1039/c5py00750jhttp://dx.doi.org/10.1039/c5py00750j
Godeau G, Arnion H, Brun C, Staedel C, Barthélémy P. Med Chem Commun, 2010, 1(1): 76-78. doi:10.1039/c0md00054jhttp://dx.doi.org/10.1039/c0md00054j
0
Views
158
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution