浏览全部资源
扫码关注微信
1.江南大学,化学与材料工程学院,无锡 214122
2.江南大学,合成与生物胶体教育部重点实验室,无锡 214122
Zi-cheng Wang, E-mail: wangzc@jiangnan.edu.cn
Published:20 January 2024,
Published Online:27 October 2023,
Received:02 July 2023,
Accepted:18 August 2023
移动端阅览
柴哲元, 王子成. 阻抗渐变型丙烯酸复合涂层的可控构筑及其5G高频波段低反射高效电磁屏蔽研究. 高分子学报, 2024, 55(1), 58-66
Chai, Z. Y.; Wang, Z. C. Controllable construction of acrylic composite coatings with impedance gradient structure for low-reflectivity electromagnetic shielding in 5G high frequency Band. Acta Polymerica Sinica, 2024, 55(1), 58-66
柴哲元, 王子成. 阻抗渐变型丙烯酸复合涂层的可控构筑及其5G高频波段低反射高效电磁屏蔽研究. 高分子学报, 2024, 55(1), 58-66 DOI: 10.11777/j.issn1000-3304.2023.23173.
Chai, Z. Y.; Wang, Z. C. Controllable construction of acrylic composite coatings with impedance gradient structure for low-reflectivity electromagnetic shielding in 5G high frequency Band. Acta Polymerica Sinica, 2024, 55(1), 58-66 DOI: 10.11777/j.issn1000-3304.2023.23173.
选用耐候性好、易加工、易成膜且保色性好的水性丙烯酸涂料作为基体,添加高效导电填料碳纳米管(CNT),通过添加不同比例的碳纳米管,以实现阻抗渐变型电磁屏蔽材料的有效构筑;当CNT质量含量达到1 wt%+5 wt%+25 wt%以及1 wt%+10 wt%+25 wt%时制备的多层级复合涂层,在K波段(18~27 GHz)与Ka波段(27~40 GHz),即5G高频波段表现出优异的低反射高效电磁屏蔽性能,电磁屏蔽效能(EMI SE)均可达到20 dB以上,且呈现出低反射的特点,吸收系数最多可以达到0.92.
The arrival of the 5G communication era has brought great convenience to people's lives
and at the same time generated a large amount of electromagnetic pollution. Therefore
there is an urgent need to develop high-performance electromagnetic shielding materials to solve the current serious problem of electromagnetic pollution. In this study
we prepared water-soluble polyacrylic acid/carbon nanotube (PAA/CNT) composites with three-layer impedance gradient structures by multiple coatings. The modification of carbon nanotubes were fully mixed with dispersant under ultrasonic condition to obtain a homogeneous dispersion
which were then centrifuged and dried. The modified carbon nanotubes and water-soluble acrylic acid were mixed in a specific ratio to obtain a homogeneous dispersion. The obtained PAA/CNT composite dispersion was coated on a polyethylene terephthalate (PET) substrate using a brush applicator. The composite coating was obtained by repeated coating after drying the coating. The difference of CNT content between each layer can realize the difference of conductivity
and then build the impedance gradient to realize the introduction-absorption-reflection-re-absorption of electromagnetic wave
so that the electromagnetic shielding performance can be optimized. When the CNT content is 5 wt%
the electromagnetic shielding value is 9.57 dB. With the increase of CNT content to 25 wt%
the electromagnetic shielding value can be up to 28.05 dB. In particular
when the CNT content of each coating is 1%
5%
25%
and 1%
10%
25%
respectively
the electromagnetic interference shielding efficiency (EMI SE) can be up to more than 20 dB
with a maximum A-power coefficients value of 0.92. Furthermore
waterborne acrylic resins enables the composite materials to maintain excellent weathering resistance. After 200 h of salt spray test
the electromagnetic shielding effect of the material can still achieve 27.85 dB. Such excellent corrosion resistance makes it promising for use in harsh environments. This work provides a strategy for the development of the preparation of electromagnetic dissipative materials without the need for organic solvents
which is environmentally friendly
simple
efficient and cost-effective.
阻抗渐变型丙烯酸涂层5G高频波段低反射高效电磁屏蔽
Impedance gradientAcrylic acidCoating5G high frequency bandLow reflectivity electromagnetic shielding
Townsend L. W.; Nealy J. E.; Wilson J. W.; Atwell W. Large solar flare radiation shielding requirements for manned interplanetary missions. J. Spacecr. Rockets, 1989, 26, 126-128. doi:10.2514/3.26043http://dx.doi.org/10.2514/3.26043
Iqbal, A.; Sambyal, P.; Koo, C. M. 2D Mxenes for electromagneticshielding: a review. Adv. Funct. Mater. , 2020, 30, 2000883. doi:10.1002/adfm.202070307http://dx.doi.org/10.1002/adfm.202070307
Abbasi H.; Antunes M.; Velasco J. I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci., 2019, 103, 319-373. doi:10.1016/j.pmatsci.2019.02.003http://dx.doi.org/10.1016/j.pmatsci.2019.02.003
Thomassin J. M.; Jerome C.; Pardoen T.; Bailly C.; Huynen I.; Detrembleur C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R Rep., 2013, 74, 211-232. doi:10.1016/j.mser.2013.06.001http://dx.doi.org/10.1016/j.mser.2013.06.001
翟通. 聚醚醚酮及其碳纳米管复合材料表面金属化的研究. 天津大学博士论文, 2016.
Shahzad F.; Alhabeb M.; Hatter C. B.; Anasori B.; Hong S. M.; Koo C. M.; Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353, 1137-1140. doi:10.1126/science.aag2421http://dx.doi.org/10.1126/science.aag2421
Pan T.; Zhang Y.; Wang C.; Gao H.; Wen B.; Yao B. Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability. Compos Sci Technol, 2020, 188, 107991. doi:10.1016/j.compscitech.2020.107991http://dx.doi.org/10.1016/j.compscitech.2020.107991
吴同华, 岳喜贵, 梅笑寒, 梁留博, 彭鑫, 马友美, 张淑玲. 三明治结构多壁碳纳米管/聚醚醚酮电磁屏蔽复合材料的制备. 高等学校化学学报, 2021, 42, 2627-2634. doi:10.7503/cjcu20210161http://dx.doi.org/10.7503/cjcu20210161
宋东东, 高瑾, 李瑞凤, 李晓刚. 碳纳米管复合水性丙烯酸涂层的腐蚀性能研究. 表面技术, 2015, 44, 47-51.
Wang Y.; Fan Z. W.; Zhang H.; Guo J.; Yan D. X.; Wang S. F.; Dai K.; Li Z. M. Mater. Design., 2021, 197, 109222. doi:10.1016/j.matdes.2020.109222http://dx.doi.org/10.1016/j.matdes.2020.109222
Tang X. H.; Li J.; Wang Y.; Weng Y. X.; Wang M. Compos. Part. B: Eng., 2020, 196, 108121. doi:10.1016/j.compositesb.2020.108121http://dx.doi.org/10.1016/j.compositesb.2020.108121
李昕, 许英涛, 郑一平, 张焱, 李从举, 陈光明. 原位聚合制备PEDOT-PSS/PVA电磁波吸收功能复合导电织物. 高分子学报, 2017, (4), 661-668. doi:10.11777/j.issn1000-3304.2017.16158http://dx.doi.org/10.11777/j.issn1000-3304.2017.16158
Dassan E. G. B.; Rahman A. A.; Abidin M. S. Z.; Akil H. M. Carbon nanotube-reinforced polymer composite for electromagnetic interference application: a review. Nanotechnol. Rev., 2020, 9, 768-788. doi:10.1515/ntrev-2020-0064http://dx.doi.org/10.1515/ntrev-2020-0064
Zhang R.; Pang H. Application of graphene-metal/conductive polymer based composites in supercapacitors. J. Energy Storage, 2021, 33, 102037. doi:10.1016/j.est.2020.102037http://dx.doi.org/10.1016/j.est.2020.102037
Lu Y.; Sun D. X.; Qi X. D.; Lei Y. Z.; Yang J. H.; Wang Y. Achieving ultrahigh synergistic effect in enhancing conductive properties of polymer composites through constructing the hybrid network of 'rigid' submicron vapor grown carbon fibers and 'reelable' carbon nanotubes. Compos. Sci. Technol., 2020, 193, 108141. doi:10.1016/j.compscitech.2020.108141http://dx.doi.org/10.1016/j.compscitech.2020.108141
Zhang H. R.; Heng Z. G.; Zhou J.; Shi Y.; Chen Y.; Zou H. W.; Liang M. In-situ co-continuous conductive network induced by carbon nanotubes in epoxy composites with enhanced electromagnetic interference shielding performance. Chem. Eng. J., 2020, 398, 125559. doi:10.1016/j.cej.2020.125559http://dx.doi.org/10.1016/j.cej.2020.125559
李学进, 王通平, 魏刚, 张镜斌, 文凯宁, 王娟. 碳纳米管的分散及其在防腐涂料中的研究进展. 涂料工业, 2022, 52(11), 68-76. doi:10.12020/j.issn.0253-4312.2022.11.68http://dx.doi.org/10.12020/j.issn.0253-4312.2022.11.68
Sun Z.; Chen J.; Jia X.; Wang G.; Shen B.; Zheng W. Humidification of high-performance and multifunctional polyimide/carbon nanotube composite foams for enhanced electromagnetic shielding. Mater. Today Phys., 2021, 21, 100521. doi:10.1016/j.mtphys.2021.100521http://dx.doi.org/10.1016/j.mtphys.2021.100521
高晗, 张扬. 聚(3,4-乙烯二氧噻吩)在电磁屏蔽领域的应用. 高分子学报, 2020, 51, 996-1009. doi:10.11777/j.issn1000-3304.2020.20071http://dx.doi.org/10.11777/j.issn1000-3304.2020.20071
Hirako K.; Shirasaka S.; Obata T.; Nakasuka S.; Saito H.; Nakamura S.; Tohara T. Development of small satellite forx-band compact synthetic aperture radar. J. Phys.: Conf. Ser., 2018, 1130, 012013. doi:10.1088/1742-6596/1130/1/012013http://dx.doi.org/10.1088/1742-6596/1130/1/012013
Ma H.; Qin C.; Jin B.; Gong P.; Lan B.; Huang Y.; Park C. B.; Li G. Using a supercritical fluid-assisted thin cell wall stretching-defoaming method to enhance the nanofiller dispersion, EMI shielding, and thermal conduction property of CNF/PVDF nanocomposites. Ind. Eng. Chem. Res., 2022, 61, 3647-3659. doi:10.1021/acs.iecr.1c05052http://dx.doi.org/10.1021/acs.iecr.1c05052
吴昕昱, 张好斌. 聚合物基纳米复合材料结构设计与电磁屏蔽性能研究. 高分子学报, 2020, 51, 573-585. doi:10.11777/j.issn1000-3304.2020.20015http://dx.doi.org/10.11777/j.issn1000-3304.2020.20015
Singh A. K.; Shishkin A.; Koppel T.; Gupta N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B Eng., 2018, 149, 188-197. doi:10.1016/j.compositesb.2018.05.027http://dx.doi.org/10.1016/j.compositesb.2018.05.027
Ma H.; Gong P.; Qiao Y.; Huang Y.; Li G. Nanofiber fluorescence coating for evaluation of complex solid-/gas-multi-phase and nano-/micro- multi-scale nanocomposite foam structure. Prog. Org. Coat., 2021, 154, 106183. doi:10.1016/j.porgcoat.2021.106183http://dx.doi.org/10.1016/j.porgcoat.2021.106183
Gedler G.; Antunes M.; Velasco J.; Ozisik R. Electromagnetic shielding effectiveness of polycarbonate/graphene nanocomposite foams processed in 2-steps with supercritical carbon dioxide. Mater. Lett., 2015, 160, 41-44. doi:10.1016/j.matlet.2015.07.070http://dx.doi.org/10.1016/j.matlet.2015.07.070
Zhang Q.; Ma H.; Gong P.; Huang Y.; Park C. B.; Li G. Fluorescence assisted visualization and destruction of particles embedded thin cell walls in polymeric foams via supercritical foaming. J. Supercrit. Fluids, 2021, 181, 105511. doi:10.1016/j.supflu.2021.105511http://dx.doi.org/10.1016/j.supflu.2021.105511
Liu Y.; Li Y.; Liu Y.; Gong P.; Niu Y.; Park C. B.; Li G. Three-dimensional polymer nanofiber structures for liquid contamination adsorption. ACS Appl. Nano Mater., 2022, 5, 5640-5651. doi:10.1021/acsanm.2c00610http://dx.doi.org/10.1021/acsanm.2c00610
0
Views
161
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution