浏览全部资源
扫码关注微信
武汉理工大学材料科学与工程学院 武汉 430070
Yi-feng Wang, E-mail: yifengwang@whut.edu.cn
Published:20 February 2024,
Published Online:27 October 2023,
Received:28 July 2023,
Accepted:07 September 2023
移动端阅览
许泽泉, 陈炜, 唐靖, 陈宗明, 陶江涛, 李彦志, 王艺峰. 基于电沉积技术制备ZnS量子点/海藻酸盐复合膜及其检测应用. 高分子学报, 2024, 55(2), 202-211
Xu, Z. Q.; Chen, W.; Tang, J.; Chen, Z. M.; Tao, J. T.; Li, Y. Z.; Wang, Y. F. Preparation of ZnS quantum dots/alginate composite films based on electrodeposition and their applications on detection. Acta Polymerica Sinica, 2024, 55(2), 202-211
许泽泉, 陈炜, 唐靖, 陈宗明, 陶江涛, 李彦志, 王艺峰. 基于电沉积技术制备ZnS量子点/海藻酸盐复合膜及其检测应用. 高分子学报, 2024, 55(2), 202-211 DOI: 10.11777/j.issn1000-3304.2023.23201.
Xu, Z. Q.; Chen, W.; Tang, J.; Chen, Z. M.; Tao, J. T.; Li, Y. Z.; Wang, Y. F. Preparation of ZnS quantum dots/alginate composite films based on electrodeposition and their applications on detection. Acta Polymerica Sinica, 2024, 55(2), 202-211 DOI: 10.11777/j.issn1000-3304.2023.23201.
基于电沉积技术发展了一种原位制备ZnS量子点及其海藻酸盐复合膜的方法,此方法具备可控性好、步骤简单、条件温和、绿色环保等优点. 实验结果表明,电沉积后可以在电极上形成ZnS量子点/海藻酸锌复合膜,该复合膜表面光滑无气泡,在302 nm紫外光下呈现清晰的蓝色荧光. 透射电镜测试和光谱分析结果表明复合膜中存在ZnS量子点,其平均粒径为3.0 nm. 利用电沉积技术的可控性和空间选择性以及ZnS量子点的荧光性能,可以制备出具备不同形状和荧光图案的复合膜. 此外,利用电沉积技术制备的ZnS量子点/海藻酸锌复合膜同时具备荧光检测和电化学检测的能力,在双模式检测以及构建双模式检测器方面具备应用前景.
On the basis of electrodeposition
a new method has been developed to
in situ
synthesize zinc sulfide (ZnS) quantum dots (QDs) and directly prepare ZnS QDs/alginate composite films on electrodes. The method shows a range of benefits
such as the good controllability
the mild conditions
and the convenient and eco-friendly process. After the electrodeposition
a smooth and homogeneous ZnS QDs/zinc alginate composite film has been generated on the surface of electrode
which exhibits clear blue fluorescence under excitation of 302 nm UV light. Transmission electron microscopy observation reveals that there are relatively uniform sized nanoparticles in the ZnS QDs/zinc alginate composite film
and their average particle size is 3.0 nm. The UV-Vis absorption spectrum of the ZnS QDs/zinc alginate composite film exhibits absorption peak at 280 nm
which is attributed to the typical absorption peak of ZnS QDs. The photoluminescence spectrum of the ZnS QDs/zinc alginate composite film shows a clear emission peak at 420 nm
which agrees with the emission peak of ZnS QDs. The ZnS QDs/zinc alginate composite films having specific shapes and fluorescence patterns can be directly fabricated by utilizing the spatial selectivity of the electrodeposition and the fluorescence property of ZnS QDs. Noteworthily
the ZnS QDs/zinc alginate composite film shows the ability for both fluorescence detection and electrochemical detection. Therefore
it can be expected that the ZnS QDs/alginate composite film prepared by electrodeposition is promising for applications in the dual-mode detection and novel dual-mode detectors and sensors.
电沉积ZnS量子点海藻酸盐电化学检测荧光检测
ElectrodepositionZnS quantum dotsAlginateElectrochemical detectionFluorescence detection
Zhang X. Z.; Li L.; Zhang M.; Zhang L.; Liu S. S.; Guo J.; Jiang N.; Peng Q. L.; Wang J. W.; Ding S. J. Intelligent recognition of CTCs from gallbladder cancer by ultrasensitive electrochemical cytosensor and diagnosis of chemotherapeutic resistance. Biosens. Bioelectron., 2023, 228, 115183. doi:10.1016/j.bios.2023.115183http://dx.doi.org/10.1016/j.bios.2023.115183
王玉珍, 赵外欧, 李亚鹏, 王静媛. 基于QDs和DOX的靶向诊疗体系的制备与表征. 高分子学报, 2016, (2), 211-218.
Kim T.; Kim K. H.; Kim S.; Choi S. M.; Jang H.; Seo H. K.; Lee H.; Chung D. Y.; Jang E. Efficient and stable blue quantum dot light-emitting diode. Nature, 2020, 586(7829), 385-389. doi:10.1038/s41586-020-2791-xhttp://dx.doi.org/10.1038/s41586-020-2791-x
Xie W. Q.; Yu K. X.; Gong Y. X. Preparation of fluorescent and antibacterial nanocomposite films based on cellulose nanocrystals/ZnS quantum dots/polyvinyl alcohol. Cellulose, 2019, 26(4), 2363-2373. doi:10.1007/s10570-019-02245-yhttp://dx.doi.org/10.1007/s10570-019-02245-y
Sharma K.; Raizada P.; Hasija V.; Singh P.; Bajpai A.; Nguyen V. H.; Rangabhashiyam S.; Kumar P.; Nadda A. K.; Kim S. Y.; Varma R. S.; Le T. T. N.; Van Le Q. ZnS-based quantum dots as photocatalysts for water purification. J. Water Process. Eng., 2021, 43, 102217. doi:10.1016/j.jwpe.2021.102217http://dx.doi.org/10.1016/j.jwpe.2021.102217
Juine R. N.; Das A. Surfactant-free green synthesis of ZnS QDs with active surface defects for selective nanomolar oxalic acid colorimetric sensors at room temperature. ACS Sustainable Chem. Eng., 2020, 8(31), 11579-11587. doi:10.1021/acssuschemeng.0c02784http://dx.doi.org/10.1021/acssuschemeng.0c02784
Caires A. J.; Mansur A. A. P.; Carvalho I. C.; Carvalho S. M.; Mansur H. S. Green synthesis of ZnS quantum dot/biopolymer photoluminescent nanoprobes for bioimaging brain cancer cells. Mater. Chem. Phys., 2020, 244, 122716. doi:10.1016/j.matchemphys.2020.122716http://dx.doi.org/10.1016/j.matchemphys.2020.122716
Asadi F.; Azizi S. N.; Chaichi M. J. Green synthesis of fluorescent PEG-ZnS QDs encapsulated into Co-MOFs as an effective sensor for ultrasensitive detection of copper ions in tap water. Mater. Sci. Eng. C, 2019, 105, 110058. doi:10.1016/j.msec.2019.110058http://dx.doi.org/10.1016/j.msec.2019.110058
Safitri E.; Heng L. Y.; Ahmad M.; Tan L. L.; Nazaruddin N.; Suhud K.; Chiang C. P.; Iqhrammullah M. Electrochemical DNA biosensor based on mercaptopropionic acid-capped ZnS quantum dots for determination of the gender of arowana fish. Biosensors, 2022, 12(8), 650. doi:10.3390/bios12080650http://dx.doi.org/10.3390/bios12080650
Plucinski A.; Lyu Z.; Schmidt B. V. K. J. Polysaccharide nanoparticles: from fabrication to applications. J. Mater. Chem. B, 2021, 9(35), 7030-7062. doi:10.1039/d1tb00628bhttp://dx.doi.org/10.1039/d1tb00628b
刘思思, 陈杰, 林祥德, 柳华杰, 曾冬冬. 壳聚糖/丝素纳米纤维载药多层膜的构建和抗菌应用. 高分子学报, 2022, 53(12), 1459-1465. doi:10.11777/j.issn1000-3304.2022.22117http://dx.doi.org/10.11777/j.issn1000-3304.2022.22117
Abdelhamid H. N.; Wu H. F. Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. J. Mater. Chem. B, 2013, 1(44), 6094-6106. doi:10.1039/c3tb21020khttp://dx.doi.org/10.1039/c3tb21020k
Gupta J.; Das K.; Tanwar A.; Rajamani P.; Bhattacharya J. An electrochemical study of the binding interaction between chitosan and MPA-CdSe QDs for the development of biocompatible theranostic nanoprobe. J. Mol. Liq., 2022, 358, 119193. doi:10.1016/j.molliq.2022.119193http://dx.doi.org/10.1016/j.molliq.2022.119193
Jiang R.; Zhu H. Y.; Yao J.; Fu Y. Q.; Guan Y. J. Chitosan hydrogel films as a template for mild biosynthesis of CdS quantum dots with highly efficient photocatalytic activity. Appl. Surf. Sci., 2012, 258(8), 3513-3518. doi:10.1016/j.apsusc.2011.11.105http://dx.doi.org/10.1016/j.apsusc.2011.11.105
Hurtado A.; Aljabali A. A. A.; Mishra V.; Tambuwala M. M.; Serrano-Aroca Á. Alginate: enhancement strategies for advanced applications. Int. J. Mol. Sci., 2022, 23(9), 4486. doi:10.3390/ijms23094486http://dx.doi.org/10.3390/ijms23094486
Yang X. Y.; Zhang M. J.; Chen Z. X.; Bu Y. W.; Gao X. E.; Sui Y. K.; Yu Y. Q. Sodium alginate micelle-encapsulating zinc phthalocyanine dye-sensitized photoelectrochemical biosensor with CdS as the photoelectric material for Hg2+ detection. ACS Appl. Mater. Interfaces, 2021, 13(14), 16828-16836. doi:10.1021/acsami.1c00215http://dx.doi.org/10.1021/acsami.1c00215
刘俊, 夏传杰, 王康龙, 李端明, 王清华, 周俊杰, 陶青, 王艺峰. 基于海藻酸钠电沉积技术制备ZnO量子点及其复合膜的检测应用研究. 高分子学报, 2022, 53(2), 145-152.
Chen W.; Lei J.; Wang Y. F.; Mendes P. M.; Zhang Z.; Hu Q.; Xiong Y. F.; Pan J. Direct generation of Mn-doped ZnS quantum dots/alginate nanocomposite beads based on gelation and in situ synthesis of quantum dots. Macromol. Mater. Eng., 2019, 304(4), 1800681. doi:10.1002/mame.201800681http://dx.doi.org/10.1002/mame.201800681
Kuang Y. W.; Li M. X.; Hu S. Y.; Yang L.; Liang Z. N.; Wang J. Q.; Jiang H. M.; Zhou X. Y.; Su Z. H. One-step co-electrodeposition of copper nanoparticles-chitosan film-carbon nanoparticles-multiwalled carbon nanotubes composite for electroanalysis of indole-3-acetic acid and salicylic acid. Sensors, 2022, 22(12), 4476. doi:10.3390/s22124476http://dx.doi.org/10.3390/s22124476
刘慧, 杨逸霏, 曹凯元, 殷洁, 熊燕飞, 石川东, 王艺峰. 微波法制备氮掺杂碳点/海藻酸纳米复合物及其电沉积技术研究. 高分子学报, 2021, 52(7), 741-749. doi:10.11777/j.issn1000-3304.2020.20252http://dx.doi.org/10.11777/j.issn1000-3304.2020.20252
Yang C.; Wang M. Y.; Wang W.; Liu H. Y.; Deng H. B.; Du Y. M.; Shi X. W. Electrodeposition induced covalent cross-linking of chitosan for electrofabrication of hydrogel contact lenses. Carbohydr. Polym., 2022, 292, 119678. doi:10.1016/j.carbpol.2022.119678http://dx.doi.org/10.1016/j.carbpol.2022.119678
Wang K. L.; Liu Y. Q.; Li D. M.; Zhang A. Y.; Mo P. P.; Liu J.; Wang Y. F.; Chen Y. J. Electrodeposited alginate-based green synthesis of CuS nanoparticles and nanocomposite films for electrochemical and colorimetric detection. Macromol. Mater. Eng., 2022, 307(8), 2200090. doi:10.1002/mame.202200090http://dx.doi.org/10.1002/mame.202200090
Mandal A.; Dandapat A.; De G. Magic sized ZnS quantum dots as a highly sensitive and selective fluorescence sensor probe for Ag+ ions. Analyst, 2012, 137(3), 765-772. doi:10.1039/c1an15653ehttp://dx.doi.org/10.1039/c1an15653e
Luna-Martínez J. F.; Hernández-Uresti D. B.; Reyes-Melo M. E.; Guerrero-Salazar C. A.; González-González V. A.; Sepúlveda-Guzmán S. Synthesis and optical characterization of ZnS-sodium carboxymethyl cellulose nanocomposite films. Carbohydr. Polym., 2011, 84(1), 566-570. doi:10.1016/j.carbpol.2010.12.021http://dx.doi.org/10.1016/j.carbpol.2010.12.021
Mishra R. K.; Choi G. J.; Choi H. J.; Gwag J. S. ZnS quantum dot based acetone sensor for monitoring health-hazardous gases in indoor/outdoor environment. Micromachines, 2021, 12(6), 598. doi:10.3390/mi12060598http://dx.doi.org/10.3390/mi12060598
Mansur A. A. P.; Mansur H. S.; Ramanery F. P.; Oliveira L. C.; Souza P. P. "Green" colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes: Study of the photodegradation of organic dye pollutants. Appl. Catal. B, 2014, 158-159, 269-279. doi:10.1016/j.apcatb.2014.04.026http://dx.doi.org/10.1016/j.apcatb.2014.04.026
Mansur A. A. P.; Custódio D. A. C.; Dorneles E. M. S.; Coura F. M.; Carvalho I. C.; Lage A. P.; Mansur H. S. Nanoplexes of ZnS quantum dot-poly-l-lysine/iron oxide nanoparticle-carboxymethylcellulose for photocatalytic degradation of dyes and antibacterial activity in wastewater treatment. Int. J. Biol. Macromol., 2023, 231, 123363. doi:10.1016/j.ijbiomac.2023.123363http://dx.doi.org/10.1016/j.ijbiomac.2023.123363
Segura A.; Rodriguez A.; Hernández P.; Pesenti H.; Hernández-Montelongo J.; Arranz A.; Benito N.; Bitencourt J.; Vergara-González L.; Nancucheo I.; Recio-Sánchez G. Sulfidogenic bioreactor-mediated formation of ZnS nanoparticles with antimicrobial and photocatalytic activity. Nanomaterials, 2023, 13(5), 935. doi:10.3390/nano13050935http://dx.doi.org/10.3390/nano13050935
Latief U.; Islam S. U.; Khan Z.; Khan M. S. Luminescent manganese/europium doped ZnS quantum dots: tunable emission and their application as fluorescent sensor. J. Alloys Compd., 2022, 910, 164889. doi:10.1016/j.jallcom.2022.164889http://dx.doi.org/10.1016/j.jallcom.2022.164889
Salah N.; Shehab M.; El Nady J.; Ebrahim S.; El-Maghraby E. M.; Sakr A. H. Polyaniline/ZnS quantum dots nanocomposite as supercapacitor electrode. Electrochim. Acta, 2023, 449, 142174. doi:10.1016/j.electacta.2023.142174http://dx.doi.org/10.1016/j.electacta.2023.142174
0
Views
198
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution