Zhao, L.; Yang, J.; Lv, Y. Q.; Tang, C. X.; Guan, Y.; Fu, S. H. Preparation of poly(acrylonitrile/ethyl acrylate) colored latex particles and their printing properties. Acta Polymerica Sinica, 2024, 55(6), 750-760
Zhao, L.; Yang, J.; Lv, Y. Q.; Tang, C. X.; Guan, Y.; Fu, S. H. Preparation of poly(acrylonitrile/ethyl acrylate) colored latex particles and their printing properties. Acta Polymerica Sinica, 2024, 55(6), 750-760 DOI: 10.11777/j.issn1000-3304.2023.23267.
Preparation of Poly(acrylonitrile/ethyl acrylate) Colored Latex Particles and Their Printing Properties
In view of the problem that the color nano-latex particles prepared by the copolymerization method have poor color strength
and it is difficult to achieve deep and intensive dyeing of fabrics
this study first screened out the combination of soft and hard monomers with better solubility to polymerizable anthraquinone dyes (AHAQ) by calculating the solubility parameters of commonly used polymeric monomers
and then prepared poly(acrylonitrile/ethyl acrylate) red nano-latex particles (PAEA) by semi-continuous emulsion polymerization. The structure and properties of latex particles were characterized by electronic universal materials testing machine and other instruments
and the effects of factors such as the proportion of hard and soft monomers
the amount of crosslinker divinylbenzene (DVB)
the amount of AHAQ
the ratio of oil to water
and the concentration of initiator on the properties of latex particles were explored
and the printing effect of colored latex particles with different solid contents on cotton fabrics was studied. The results showed that the hard monomer acrylonitrile (AN) and the soft monomer ethyl acrylate (EA) had good solubility to the dye
and when the ratio of the two was 1:1.5‒1:2
the obtained latex film had both strength and ductility. The dosage of dye increased from 0.5 wt% to 2.5 wt%
the oil-water ratio increased from 1:8 to 1:4
and the conversion rates of monomer and dye showed a decreasing trend. When the solids content of latex is 30 wt%
the
K
/
S
value of the printed fabric is 10.34. Compared with the
color latex particles prepared by the previous copolymerization method
the grafting rate of the dye in the latex particles increased significantly
which effectively improved the tinting strength of the color nano latex particles.
Garcia V. S.; Guerrero S. A.; Gugliotta L. M.; Gonzalez V. D. G. A lateral flow immunoassay based on colored latex particles for detection of canine visceral leishmaniasis. Acta Trop., 2020, 212, 105643. doi:10.1016/j.actatropica.2020.105643http://dx.doi.org/10.1016/j.actatropica.2020.105643
Abdollahi A.; Sahandi-Zangabad K.; Roghani-Mamaqani H. Rewritable anticounterfeiting polymer inks based on functionalized stimuli-responsive latex particles containing spiropyran photoswitches: reversible photopatterning and security marking. ACS Appl. Mater. Interfaces, 2018, 10(45), 39279-39292. doi:10.1021/acsami.8b14865http://dx.doi.org/10.1021/acsami.8b14865
Fang K. J.; Ren B. A facile method for preparing colored nanospheres of poly(styrene-co-acrylic acid). Dyes Pigm., 2014, 100, 50-56. doi:10.1016/j.dyepig.2013.07.021http://dx.doi.org/10.1016/j.dyepig.2013.07.021
Yang Y.; Li M.; Fu S. H. Monodispersed colored polymer latex particles with film formation and chemical crosslinking for application on textile binder-free printing. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 619, 126527. doi:10.1016/j.colsurfa.2021.126527http://dx.doi.org/10.1016/j.colsurfa.2021.126527
Leelajariyakul S.; Noguchi H.; Kiatkamjornwong S. Surface-modified and micro-encapsulated pigmented inks for ink jet printing on textile fabrics. Prog. Org. Coat., 2008, 62(2), 145-161. doi:10.1016/j.porgcoat.2007.10.005http://dx.doi.org/10.1016/j.porgcoat.2007.10.005
Polpanich D.; Asawapirom U.; Thiramanas R.; Piyakulawat P. Self-colored nanoparticles containing naphthalene-bisimide derivatives: synthesis and protein adsorption study. Mater. Chem. Phys., 2011, 129(1-2), 495-500. doi:10.1016/j.matchemphys.2011.04.050http://dx.doi.org/10.1016/j.matchemphys.2011.04.050
Qiao R.; Zhang X. L.; Qiu R.; Kang Y. S. Synthesis of functional microcapsules by in situ polymerization for electrophoretic image display elements. Colloids Surf. A Physicochem. Eng. Aspects, 2008, 313-314, 347-350.
Hildebrand J.; Scott R. The solubility of nonelectrolytes. Science, 1950, 113(2938), 450-451.
Hughes J. M.; Aherne D.; Coleman J. N. Generalizing solubility parameter theory to apply to one- and two-dimensional solutes and to incorporate dipolar interactions. J. Appl. Polym. Sci., 2013, 127(6), 4483-4491. doi:10.1002/app.38051http://dx.doi.org/10.1002/app.38051
Zhou Z. Y.; Li L.; Liu X. Y.; Lei H. Y.; Wang W. J.; Yang Y. Y.; Wang J. F.; Cao Y. X. An efficient water-assisted liquid exfoliation of layered MXene (Ti3C2Tx) by rationally matching Hansen solubility parameter and surface tension. J. Mol. Liq., 2021, 324, 115116. doi:10.1016/j.molliq.2020.115116http://dx.doi.org/10.1016/j.molliq.2020.115116
Scott G. Properties of polymers. their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Endeavour, 1992, 16(2), 97-98. doi:10.1016/0160-9327(92)90023-ihttp://dx.doi.org/10.1016/0160-9327(92)90023-i
Park J. Y.; Paul D. R. Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method. J. Membr. Sci., 1997, 125(1), 23-39. doi:10.1016/s0376-7388(96)00061-0http://dx.doi.org/10.1016/s0376-7388(96)00061-0
Hoy K. L. New values of the solubility parameters from vapor pressure data. J. Paint Technol., 1970, 42(541), 76-118.
Hoy K. Tables of Solubility Parameters, Solvent and Coatings Materials Research and Development Department. Amsterdam: Elsevier, 1985. 216-219.
Karst D.; Yang Y. Q. Using the solubility parameter to explain disperse dye sorption on polylactide. J. Appl. Polym. Sci., 2005, 96(2), 416-422. doi:10.1002/app.21456http://dx.doi.org/10.1002/app.21456
Fedors R. F. A method for estimating both the solubility parameters and molar volumes of liquids. Polym. Eng. Sci., 1974, 14(2), 147-154. doi:10.1002/pen.760140211http://dx.doi.org/10.1002/pen.760140211
Li B. T.; Shen J.; Liang R. B.; Ji W. J.; Kan C. Y. Synthesis and characterization of covalently colored polymer latex based on new polymerizable anthraquinone dyes. Colloid Polym. Sci., 2012, 290(18), 1893-1900. doi:10.1007/s00396-012-2718-7http://dx.doi.org/10.1007/s00396-012-2718-7
Yen G. C.; Duh P. D.; Chuang D. Y. Antioxidant activity of anthraquinones and anthrone. Food Chem., 2000, 70(4), 437-441. doi:10.1016/s0308-8146(00)00108-4http://dx.doi.org/10.1016/s0308-8146(00)00108-4
Li B. T.; Shen J.; Jiang Y. M.; Wang J. S.; Kan C. Y. Preparation and properties of covalently colored polymer latex based on a new anthraquinone monomer. J. Appl. Polym. Sci., 2013, 129(3), 1484-1490. doi:10.1002/app.38848http://dx.doi.org/10.1002/app.38848
Fang K. J.; Zhang L.; Cai Y. Q.; Hao L. Y.; Liu X. M. Hollow disperse dyes/copolymer composite nanospheres. Dyes Pigm., 2017, 136, 191-196. doi:10.1016/j.dyepig.2016.08.037http://dx.doi.org/10.1016/j.dyepig.2016.08.037