Du, J.; Liu, M.; Wang, L. P.; Guo, B.; Tan, X. X.; Luo, W. H. Deuterated and ring-opening metathesis polymerization of cyclooctadiene,and solid-state catalytic addition of its polymers. Acta Polymerica Sinica, 2024, 55(6), 738-749
Du, J.; Liu, M.; Wang, L. P.; Guo, B.; Tan, X. X.; Luo, W. H. Deuterated and ring-opening metathesis polymerization of cyclooctadiene,and solid-state catalytic addition of its polymers. Acta Polymerica Sinica, 2024, 55(6), 738-749 DOI: 10.11777/j.issn1000-3304.2023.23273.
Deuterated and Ring-opening Metathesis Polymerization of Cyclooctadiene, and Solid-state Catalytic Addition of Its Polymers增强出版
Deuterated (tritiated) polymers are a type of promissing target materials for inertial confinement fusion. To prepare deuterated polymers with more tritium addition sites
in this work
the deuteration and ring-opening metathesis polymerization of cyclooctadiene was investigated. The mechanism for deuteration reaction of 1
5-cyclooctadiene was studied by analyzing the components of intermediate products during the reaction process. The results of magnetic resonance spectroscopy (
1
H-NMR
2
H-NMR and
13
C-NMR) showed that the by-product of deuterated cyclooctadiene was deuterated cyclooctadiene. The effects of temperature
additives and reaction time on the deuteration rate of products and the yields of by-products were studied
and then the optimized reaction conditions were obtained. Deuterated 1
3-cyclooctadiene with a high deuteration rate up to 96% was prepared. The experiment of ring-opening metathesis polymerization of (deuterated) 1
3-cyclooctadiene was carried out. The existence of a large number of continuous conjugated double bonds led to the crystallization of the polymer
resulting in a poor solubility. In the presence of 5 wt% Pd/BaSO
4
and Grubbs second generation catalyst
solid-state catalytic deuteration experiments of poly(1
3-cyclooctadiene) and the copolymers of deuterated 1
3-cyclooctadiene and deuterated cyclooctadiene were carried out. The polymer chain can be added to near saturation with
D
2
accompanied by obvious hydrogen isotope exchange reaction. A homogeneous solid-phase catalytic hydrogen isotope addition method has been developed. By this method
the well processed deuterated polymer target pellets can be
added with tritium directly
and thus the deuterium-tritiated polymer target pellets can be prepared.
Campbell E. M.; Sangster T. C.; Goncharov V. N.; Zuegel J. D.; Morse S. F. B.; Sorce C.; Collins G. W.; Wei M. S.; Betti R.; Regan S. P.; Froula D. H.; Dorrer C.; Harding D. R.; Gopalaswamy V.; Knauer J. P.; Shah R.; Mannion O. M.; Marozas J. A.; Radha P. B.; Rosenberg M. J.; Collins T. J. B.; Christopherson A. R.; Solodov A. A.; Cao D.; Palastro J. P.; Follett R. K.; Farrell M. Direct-drive laser fusion: status, plans and future. Philos. Trans. A Math. Phys. Eng. Sci., 2021, 379(2189), 20200011. doi:10.1098/rsta.2020.0011http://dx.doi.org/10.1098/rsta.2020.0011
Takagi M.; Norimatsu T.; Yamanaka T.; Nakai S. Fabrication of deuterated-tritiated polystyrene shells for laser fusion experiments by means of an isotope exchange reaction. J. Vac. Sci. Technol. A, 1992, 10(1), 239-242. doi:10.1116/1.578142http://dx.doi.org/10.1116/1.578142
Nakai S. D.; Mima K.; Kitagawa Y. Status and plans for GEKKO XII and Japanese laser fusion program. Fusion Technol., 1992, 21(3P2A), 1350-1357. doi:10.13182/fst92-a29911http://dx.doi.org/10.13182/fst92-a29911
Hohenberger M.; Meezan N. B.; Riedel W. M.; Kabadi N.; Forrest C. J.; Aghaian L.; Cappelli M. A.; Farrell M.; Glenzer S. H.; Heeter B.; Heredia R.; Landen O. L.; MacKinnon A. J.; Petrasso R.; Shuldberg C. M.; Treffert F.; Hsing W. W. Developing "inverted-corona" fusion targets as high-fluence neutron sources. Rev. Sci. Instrum., 2021, 92(3), 033544. doi:10.1063/5.0040877http://dx.doi.org/10.1063/5.0040877
Ren G.; Yan J.; Liu J.; Lan K.; Chen Y. H.; Huo W. Y.; Fan Z.; Zhang X.; Zheng J.; Chen Z.; Jiang W.; Chen L.; Tang Q.; Yuan Z.; Wang F.; Jiang S.; Ding Y.; Zhang W.; He X. T. Neutron generation by laser-driven spherically convergent plasma fusion. Phys. Rev. Lett., 2017, 118(16), 165001. doi:10.1103/physrevlett.118.165001http://dx.doi.org/10.1103/physrevlett.118.165001
Liu M. F.; Zheng Y. Q.; Chen Q.; Wang Y. G.; Liu Y. Y.; Li J.; Li J.; Huang Y. W.; Yin Q. Controllable production of deuterated polymer beads for ICF. J. Nucl. Mater., 2020, 535, 152159. doi:10.1016/j.jnucmat.2020.152159http://dx.doi.org/10.1016/j.jnucmat.2020.152159
Li L. W.; Jakowski J.; Do C.; Hong K. L. Deuteration and polymers: rich history with great potential. Macromolecules, 2021, 54(8), 3555-3584. doi:10.1021/acs.macromol.0c02284http://dx.doi.org/10.1021/acs.macromol.0c02284
Habersberger B. M.; Lodge T. P.; Bates F. S. Solvent selective hydrogen-deuterium exchange on saturated polyolefins. Macromolecules, 2012, 45(19), 7778-7782. doi:10.1021/ma301814nhttp://dx.doi.org/10.1021/ma301814n
Tan X. X.; Du J.; Liu Y. L.; Ba J. W.; Yang X. Y.; Yang X. W.; Liu M. F.; Luo W. H. A convenient strategy to prepare supramolecular deuterated polymers. Polymer, 2022, 251, 124891. doi:10.1016/j.polymer.2022.124891http://dx.doi.org/10.1016/j.polymer.2022.124891
Du J.; Tan X. X.; Wang L. P.; Qin C.; Luo W. H. Preparation of a deuterated-tritiated polymer via solid state catalytic tritiation of deuterated polycyclooctene. Fusion Eng. Des., 2023, 188, 113415. doi:10.1016/j.fusengdes.2022.113415http://dx.doi.org/10.1016/j.fusengdes.2022.113415
Du J.; Tan X. X.; Wang L. P.; Qin C.; Chen X. Q.; Wu Z. G.; Guo B.; Luo W. H. Solid state catalytic tritiation of deuterated polybutadiene through isotopic exchange and tritium addition. Fusion Eng. Des., 2021, 170, 112518. doi:10.1016/j.fusengdes.2021.112518http://dx.doi.org/10.1016/j.fusengdes.2021.112518
Ishibashi K.; Matsubara S. Preparation of cyclohexene-d10 by H/D-exchange reaction. Chem. Lett., 2007, 36(6), 724-725. doi:10.1246/cl.2007.724http://dx.doi.org/10.1246/cl.2007.724