浏览全部资源
扫码关注微信
1.东北林业大学材料科学与工程学院 哈尔滨 150040
2.中国科学院理化技术研究所 北京 100190
Jun-hui He, E-mail: jhhe@mail.ipc.ac.cn
Shi-xue Ren, E-mail: renshixue@nefu.edu.cn
Published:20 August 2024,
Published Online:07 April 2024,
Received:05 December 2023,
Accepted:06 February 2024
移动端阅览
张书玉, 郭建荣, 贺军辉, 任世学. 秸秆基高强度透明纤维素薄膜. 高分子学报, 2024, 55(8), 1009-1020
Zhang, S. Y.; Guo, J. R.; He, J. H.; Ren S. X. From cellulose in straw to transparent high-strength films. Acta Polymerica Sinica, 2024, 55(8), 1009-1020
张书玉, 郭建荣, 贺军辉, 任世学. 秸秆基高强度透明纤维素薄膜. 高分子学报, 2024, 55(8), 1009-1020 DOI: 10.11777/j.issn1000-3304.2023.23277.
Zhang, S. Y.; Guo, J. R.; He, J. H.; Ren S. X. From cellulose in straw to transparent high-strength films. Acta Polymerica Sinica, 2024, 55(8), 1009-1020 DOI: 10.11777/j.issn1000-3304.2023.23277.
以农业废弃产物秸秆皮作为原料,通过简单热压的方法提纯纤维素,制备了不同厚度的微纤薄膜(SC films),将环氧树脂加压铸入微纤薄膜获得了纤维素-环氧树脂复合薄膜(SC-Ep films). 采用扫描电子显微镜、傅里叶变换红外光谱仪、紫外-可见分光光度计对SC与SC-Ep薄膜分别进行表征,并对其力学性能、防水性、热稳定性、有机溶剂稳定性及阻隔性能进行测试. 结果表明,最佳复合薄膜(SC4-Ep1)呈现了优异的透光性(最高透过率可达87%)、高力学强度(拉伸应力可达83.4 MPa,杨氏模量为5.41 GPa),远高于文献中以及市场上同类型的塑料薄膜材料. 此外,从SC
4
薄膜到SC
4
-Ep
1
薄膜,接触角提高至98.9°,水蒸气透过率显著降低了75.12%,表现出优异的阻隔性能. SC
4
-Ep
1
复合薄膜在水中以及多种有机溶剂中表现出极强的稳定性. 本工作为制备复合生物基薄膜以及生物基塑料产品提供了新的思路.
Petroleum-based plastics can cause serious environmental problems such as "microplastics"
and common biobased plastics are generally expensive and produced by complex processes. It is thus urgent to develop new biobased materials that are inexpensive
simple to prepare
and possess superior properties. In this work
we used agricultural waste straw bark as raw material
and fabricated microfiber films (SC films) with varied thicknesses by simple hot pressing. Then
cellulose-epoxy films (SC-Ep films) were obtained by pressure casting of epoxy resin into microfiber films. Scanning electron microscopy (SEM)
Fourier transform infrared spectrometer (FTIR)
and ultraviolet-visible spectrophotometer (UV-Vis) were used to characterize SC and composite SC
4
-Ep
1
films. In addition
their mechanical properties
water resistance
thermal stability
organic solvent stability
and barrier property were investigated. The results showed that the optimal film (SC
4
-Ep
1
films) presented a transmittance as high as 87% and outstanding mechanical strength (tensile stress up to 83.4%
Young's modulus 5.41 GPa) that is much higher than those of similar types plastic materials in the literature as well as in the market. In addition
the water vapor transmission rate was significantly reduced by 75.12% from SC
4
films) to SC
4
-Ep
1
films composite film
exhibiting superior barrier property. SC
4
-Ep
1
films also displayed excellent stability in water and various organic solvents. This work provides a new approach to the preparation of composite bio-based films as well as bioplastic products.
纤维素环氧树脂透明力学性能生物质复合材料
CelluloseEpoxy resinTransparencyMechanical propertiesBiomass composites
Walker T. The ambivalence of disposable time: the source and remedy of the national difficulties at two hundred. Contrib. Polit. Econ., 2021, 40(1), 80-90. doi:10.1093/cpe/bzab005http://dx.doi.org/10.1093/cpe/bzab005
Kitz R.; Walker T.; Charlebois S.; Music J. Food packaging during the COVID-19 pandemic: consumer perceptions. Int. J. Consum. Stud., 2022, 46(2), 434-448. doi:10.1111/ijcs.12691http://dx.doi.org/10.1111/ijcs.12691
Walker T. R. (Micro)plastics and the UN sustainable development goals. Curr. Opin. Green Sustain. Chem., 2021, 30, 100497. doi:10.1016/j.cogsc.2021.100497http://dx.doi.org/10.1016/j.cogsc.2021.100497
Geyer R.; Jambeck J. R.; Law K. L. Production, use, and fate of all plastics ever made. Sci. Adv., 2017, 3(7), e1700782. doi:10.1126/sciadv.1700782http://dx.doi.org/10.1126/sciadv.1700782
Lebreton L.; Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun., 2019, 5(1), 6. doi:10.1057/s41599-018-0212-7http://dx.doi.org/10.1057/s41599-018-0212-7
Reshmy R.; Thomas D.; Philip E.; Paul S. A.; Madhavan A.; Sindhu R.; Sirohi R.; Varjani S.; Pugazhendhi A.; Pandey A.; Binod P. Bioplastic production from renewable lignocellulosic feedstocks: a review. Rev. Environ. Sci. Bio/Technol., 2021, 20(1), 167-187. doi:10.1007/s11157-021-09565-1http://dx.doi.org/10.1007/s11157-021-09565-1
Zoungranan Y.; Lynda E.; Dobi-Brice K. K.; Tchirioua E.; Bakary C.; Yannick D. D. Influence of natural factors on the biodegradation of simple and composite bioplastics based on cassava starch and corn starch. J. Environ. Chem. Eng., 2020, 8(5), 104396. doi:10.3390/ijms18102075http://dx.doi.org/10.3390/ijms18102075
Sagnelli D.; Hooshmand K.; Kemmer G. C.; Kirkensgaard J. J. K.; Mortensen K.; Giosafatto C. V. L.; Holse M.; Hebelstrup K. H.; Bao J.; Stelte W.; Bjerre A. B.; Blennow A. Cross-linked amylose bio-plastic: a transgenic-based compostable plastic alternative. Int. J. Mol. Sci., 2017, 18(10), E2075. doi:10.3390/ijms18102075http://dx.doi.org/10.3390/ijms18102075
Jian X. Y.; An X. P.; Li Y. D.; Chen J. H.; Wang M.; Zeng J. B. All plant oil derived epoxy thermosets with excellent comprehensive properties. Macromolecules, 2017, 50(15), 572985738. doi:10.1021/acs.macromol.7b01068http://dx.doi.org/10.1021/acs.macromol.7b01068
Lim C.; Yusoff S.; Ng C. G.; Lim P. E.; Ching Y. C. Bioplastic made from seaweed polysaccharides with green production methods. J. Environ. Chem. Eng., 2021, 9(5), 105895. doi:10.1016/j.jece.2021.105895http://dx.doi.org/10.1016/j.jece.2021.105895
Ashworth C. Plastics from proteins. Nat. Rev. Chem., 2022, 6(3), 165. doi:10.1038/s41570-022-00367-9http://dx.doi.org/10.1038/s41570-022-00367-9
Yang J. L.; Ching Y. C.; Chuah C. H. Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers, 2019, 11(5), 751. doi:10.3390/polym11050751http://dx.doi.org/10.3390/polym11050751
Zanchetta E.; Damergi E.; Patel B.; Borgmeyer T.; Pick H.; Pulgarin A.; Ludwig C. Algal cellulose, production and potential use in plastics: challenges and opportunities. Algal Res., 2021, 56, 102288. doi:10.1016/j.algal.2021.102288http://dx.doi.org/10.1016/j.algal.2021.102288
Budtova T.; Navard P. Cellulose in NaOH-water based solvents: a review. Cellulose, 2016, 23(1), 5-55. doi:10.1007/s10570-015-0779-8http://dx.doi.org/10.1007/s10570-015-0779-8
Yang Q. L.; Fukuzumi H.; Saito T.; Isogai A.; Zhang L. N. Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules, 2011, 12(7), 2766-2771. doi:10.1021/bm200766vhttp://dx.doi.org/10.1021/bm200766v
Yin Y. N.; Zhang C. G.; Yu W. C.; Kang G. H.; Yang Q. L.; Shi Z. Q.; Xiong C. X. Transparent and flexible cellulose dielectric films with high breakdown strength and energy density. Energy Storage Mater., 2020, 26, 105-111. doi:10.1016/j.ensm.2019.12.034http://dx.doi.org/10.1016/j.ensm.2019.12.034
Zheng X.; Huang F.; Chen L. H.; Huang L. L.; Cao S. L.; Ma X. J. Preparation of transparent film via cellulose regeneration: correlations between ionic liquid and film properties. Carbohydr. Polym., 2019, 203, 214-218. doi:10.1016/j.carbpol.2018.09.060http://dx.doi.org/10.1016/j.carbpol.2018.09.060
Wan J. Q.; Diao H. L.; Yu J.; Song G. J.; Zhang J. A biaxially stretched cellulose film prepared from ionic liquid solution. Carbohydr. Polym., 2021, 260, 117816. doi:10.1016/j.carbpol.2021.117816http://dx.doi.org/10.1016/j.carbpol.2021.117816
Makarov I. S.; Shambilova G. K.; Vinogradov M. I.; Zatonskih P. V.; Gromovykh T. I.; Lutsenko S. V.; Arkharova N. A.; Kulichikhin V. G. Films of bacterial cellulose prepared from solutions in N-methylmorpholine-N-oxide: structure and properties. Processes, 2020, 8(2), 171. doi:10.3390/pr8020171http://dx.doi.org/10.3390/pr8020171
Wang Y.; Liu L. J.; Chen P.; Zhang L. N.; Lu A. Cationic hydrophobicity promotes dissolution of cellulose in aqueous basic solution by freezing-thawing. Phys. Chem. Chem. Phys., 2018, 20(20), 14223-14233. doi:10.1039/c8cp01268ghttp://dx.doi.org/10.1039/c8cp01268g
Sun X. X.; Wu Q. L.; Ren S. X.; Lei T. Z. Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose, 2015, 22(2), 1123-1133. doi:10.1007/s10570-015-0574-6http://dx.doi.org/10.1007/s10570-015-0574-6
Lassoued M.; Crispino F.; Loranger E. Design and synthesis of transparent and flexible nanofibrillated cellulose films to replace petroleum-based polymers. Carbohydr. Polym., 2021, 254, 117411. doi:10.1016/j.carbpol.2020.117411http://dx.doi.org/10.1016/j.carbpol.2020.117411
Liu Y. L.; Zhang S. F.; Lin R.; Li L.; Li M.; Du M.; Tang R. H. Potassium permanganate oxidation as a carboxylation and defibrillation method for extracting cellulose nanofibrils to fabricate films with high transmittance and haze. Green Chem., 2021, 23(20), 8069-8078. doi:10.1039/d1gc02657ghttp://dx.doi.org/10.1039/d1gc02657g
Kumar V.; Bollström R.; Yang A.; Chen Q. X.; Chen G.; Salminen P.; Bousfield D.; Toivakka M. Comparison of nano- and microfibrillated cellulose films. Cellulose, 2014, 21(5), 3443-3456. doi:10.1007/s10570-014-0357-5http://dx.doi.org/10.1007/s10570-014-0357-5
Tian S. B.; Jiang J. G.; Zhu P. G.; Yu Z. Y.; Oguzlu H.; Balldelli A.; Wu J.; Zhu J. Y.; Sun X.; Saddler J.; Jiang F. Fabrication of a transparent and biodegradable cellulose film from kraft pulp via cold alkaline swelling and mechanical blending. ACS Sustain. Chem. Eng., 2022, 10(32), 10560-10569. doi:10.1021/acssuschemeng.2c01937http://dx.doi.org/10.1021/acssuschemeng.2c01937
de Oliveira A. C. S.; Ferreira L. F.; de Oliveira Begali D.; Ugucioni J. C.; de Sena Neto A. R.; Yoshida M. I.; Borges S. V. Thermoplasticized pectin by extrusion/thermo-compression for film industrial application. J. Polym. Environ., 2021, 29(8), 2546-2556. doi:10.1007/s10924-021-02054-0http://dx.doi.org/10.1007/s10924-021-02054-0
Hua X. D.; Li J. H.; Liu H.; Zhang C. Q.; Han Y.; Gao F.; Hodes G.; Wang P. W.; Yang Z.; Liu S. F. Preparation of Cu2Se thin films by vacuum evaporation and hot-pressing. Vacuum, 2021, 185, 109947. doi:10.1016/j.vacuum.2020.109947http://dx.doi.org/10.1016/j.vacuum.2020.109947
Oliaei E.; Berthold F.; Berglund L. A.; Lindström T. Eco-friendly high-strength composites based on hot-pressed lignocellulose microfibrils or fibers. ACS Sustain. Chem. Eng., 2021, 9(4), 1899-1910. doi:10.1021/acssuschemeng.0c08498http://dx.doi.org/10.1021/acssuschemeng.0c08498
Jacucci G.; Schertel L.; Zhang Y. T.; Yang H.; Vignolini S. Light management with natural materials: from whiteness to transparency. Adv. Mater., 2021, 33(28), e2001215. doi:10.1002/adma.202001215http://dx.doi.org/10.1002/adma.202001215
Hou G. Y.; Liu Y.; Zhang D. J.; Li G. H.; Xie H.; Fang Z. Q. Approaching theoretical haze of highly transparent all-cellulose composite films. ACS Appl. Mater. Interfaces, 2020, 12(28), 31998-32005. doi:10.1021/acsami.0c08586http://dx.doi.org/10.1021/acsami.0c08586
Yao Y. G.; Tao J. S.; Zou J. H.; Zhang B. L.; Li T.; Dai J. Q.; Zhu M. W.; Wang S.; Fu K. K.; Henderson D.; Hitz E.; Peng J. B.; Hu L. B. Light management in plastic-paper hybrid substrate towards high-performance optoelectronics. Energy Environ. Sci., 2016, 9(7), 2278-2285. doi:10.1039/c6ee01011chttp://dx.doi.org/10.1039/c6ee01011c
Cui B. Y.; Xie H.; Sun H.; Ji T.; Li S.; Jia X.; Wang W. H. Anisotropic, ultrastrong and light-transmission film designed on wheat straw. J. Mater. Chem. A, 2022, 10(24), 12968-12976. doi:10.1039/d2ta01204ahttp://dx.doi.org/10.1039/d2ta01204a
孙永昌. 木质素高效分离、结构表征及基于离子液体的降解机理研究. 北京林业大学博士学位论文, 2014.
朱妍丽. 玉米不同分子量纤维素抑制小麦淀粉消化机制及应用. 甘肃农业大学博士论文, 2022.
Sharifi Zamani E.; Ahadian H.; Maloney T. Twin-roll forming, a novel method for producing high-consistency microfibrillated cellulosic films. Cellulose, 2022, 29(18), 9627-9636. doi:10.1007/s10570-022-04884-0http://dx.doi.org/10.1007/s10570-022-04884-0
Marangoni Júnior L.; Augusto P. E. D.; Vieira R. P.; Borges D. F.; Ito D.; Teixeira F. G.; Dantas F. B. H.; Padula M. Food-Package-Processing relationships in emerging technologies: ultrasound effects on polyamide multilayer packaging in contact with different food simulants. Food Res. Int., 2023, 163, 112217. doi:10.1016/j.foodres.2022.112217http://dx.doi.org/10.1016/j.foodres.2022.112217
Nascimento E. S.; Barros M. O.; Cerqueira M. A.; Lima H. L.; de Fatima Borges M.; Pastrana L. M.; Gama F. M.; Rosa M. F.; Azeredo H. M. C.; Gonçalves C. All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals. Food Packag. Shelf Life, 2021, 29, 100715. doi:10.1016/j.fpsl.2021.100715http://dx.doi.org/10.1016/j.fpsl.2021.100715
Zhang Y. C.; Jiang F. Q.; Zhao W. X.; Fu L. H.; Xu C. H.; Lin B. F. One-pot synthesis of degradable and renewable cellulose-based packaging films. ACS Sustain. Chem. Eng., 2022, 10(50), 16871-16881. doi:10.1021/acssuschemeng.2c05440http://dx.doi.org/10.1021/acssuschemeng.2c05440
Kyriazis A.; Kilian R.; Sinapius M.; Rager K.; Dietzel A. Tensile strength and structure of the interface between a room-curing epoxy resin and thermoplastic films for the purpose of sensor integration. Polymers, 2021, 13(3), 330. doi:10.3390/polym13030330http://dx.doi.org/10.3390/polym13030330
Yamauchi Y.; Samitsu S.; Goto K.; Takeuchi M. Bottlebrush polymer-reinforced transparent multiphase plastics with enhanced thermal stability. Chem. Commun., 2020, 56(93), 14641-14644. doi:10.1039/d0cc06769ehttp://dx.doi.org/10.1039/d0cc06769e
陈文帅. 生物质纳米纤维素及其自聚集气凝胶的制备与结构性能研究. 东北林业大学博士学位论文, 2013.
Chen W. H.; Wang C. W.; Ong H. C.; Show P. L.; Hsieh T. H. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel, 2019, 258, 116168. doi:10.1016/j.fuel.2019.116168http://dx.doi.org/10.1016/j.fuel.2019.116168
Torres-Herrador F.; Eschenbacher A.; Blondeau J.; Magin T. E.; van Geem K. M. Study of the degradation of epoxy resins used in spacecraft components by thermogravimetry and fast pyrolysis. J. Anal. Appl. Pyrolysis, 2022, 161, 105397. doi:10.1016/j.jaap.2021.105397http://dx.doi.org/10.1016/j.jaap.2021.105397
Raj M.; Maheta J.; Raj L. Synthesis characterization and application of hexafunctional epoxy resin and comparison against commercial epoxy resin. Polym. Polym. Compos., 2022, 30, 096739112210767. doi:10.1177/09673911221076721http://dx.doi.org/10.1177/09673911221076721
Wang J.; Yu Z. X.; Xiao X. H.; Chen Z. Q.; Huang J. Q.; Liu Y. C. A novel hydroxyapatite super-hydrophilic membrane for efficient separation of oil-water emulsions, desalting and removal of metal ions. Desalination, 2023, 565, 116864. doi:10.1016/j.desal.2023.116864http://dx.doi.org/10.1016/j.desal.2023.116864
Trinh B. M.; Chang B. P.; Mekonnen T. H. The barrier properties of sustainable multiphase and multicomponent packaging materials: a review. Prog. Mater. Sci., 2023, 133, 101071. doi:10.1016/j.pmatsci.2023.101071http://dx.doi.org/10.1016/j.pmatsci.2023.101071
Zhang K.; Yu Q. X.; Zhu L. J.; Liu S. W.; Chi Z. G.; Chen X. D.; Zhang Y.; Xu J. R. The preparations and water vapor barrier properties of polyimide films containing amide moieties. Polymers, 2017, 9(12), 677. doi:10.3390/polym9120677http://dx.doi.org/10.3390/polym9120677
Cussler E. L. Permeability properties of plastics and elastomers. J. Control. Release, 2003, 92(3), 399. doi:10.1016/s0168-3659(03)00333-xhttp://dx.doi.org/10.1016/s0168-3659(03)00333-x
Barros C.; Miranda S.; Castro O.; Carneiro O. S.; Machado A. V. LDPE-nanoclay films for food packaging with improved barrier properties. J. Plast. Film Sheeting, 2023, 39(3), 304-320. doi:10.1177/87560879221151190http://dx.doi.org/10.1177/87560879221151190
Zhang Z.; Abidi N.; Lucia L.; Chabi S.; Denny C. T.; Parajuli P.; Rumi S. S. Cellulose/nanocellulose superabsorbent hydrogels as a sustainable platform for materials applications: a mini-review and perspective. Carbohydr. Polym., 2023, 299, 120140. doi:10.1016/j.carbpol.2022.120140http://dx.doi.org/10.1016/j.carbpol.2022.120140
0
Views
154
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution