浏览全部资源
扫码关注微信
1.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 宁波 315201
2.中国科学院大学 北京 100049
Received:30 December 2023,
Accepted:31 January 2024,
Published:20 May 2024
移动端阅览
赵文凯, 李升旭, 付广恩, 张涛. 二维sp2-碳共轭聚合物的结构设计、可控制备与应用研究. 高分子学报, 2024, 55(5), 532-552
Zhao, W. K.; Li, S. X.; Fu, G. E.; Zhang, T. Structural design, controlled preparation and applications of two-dimensional sp2c-conjugated polymers. Acta Polymerica Sinica, 2024, 55(5), 532-552
赵文凯, 李升旭, 付广恩, 张涛. 二维sp2-碳共轭聚合物的结构设计、可控制备与应用研究. 高分子学报, 2024, 55(5), 532-552 DOI: 10.11777/j.issn1000-3304.2023.23301.
Zhao, W. K.; Li, S. X.; Fu, G. E.; Zhang, T. Structural design, controlled preparation and applications of two-dimensional sp2c-conjugated polymers. Acta Polymerica Sinica, 2024, 55(5), 532-552 DOI: 10.11777/j.issn1000-3304.2023.23301.
二维sp
2
-碳共轭聚合物是指通过碳碳双键将构筑单元连接起来的层状聚合物材料. 因其具有可设计的周期性多孔结构、高比表面积、优异的结构稳定性和高载流子迁移速率等优点,被认为是最具前景的聚合物新材料之一. 本文以作者课题组的研究工作为主,对二维sp
2
-碳共轭聚合物的结构设计和合成方法、薄膜可控制备策略及其在盐差发电、海水提铀、光催化、荧光传感和质子传导等领域应用进行了总结,并从晶体结构的调控、新型合成方法的探索、通用性薄膜合成策略的设计以及相关应用的拓展等方面对二维sp
2
-碳共轭聚合物的研究进行了展望.
Two-dimensional sp
2
c-conjugated polymers (2D sp
2
c-CPs) refer to layered materials constructed by C=C. 2D sp
2
c-CPs have shown great potential in photocatalytic conversion of high-value-added products
osmotic energy generation
fluorescence sensing
proton conduction
organic semiconductor devices
and the extraction of radioactive nuclides
due to their designable periodic porous structures
high surface area
excellent structural stability
and high charge transfer. This review primarily elucidates the research endeavors of our research group concerning 2D sp
2
c-CPs. Firstly
the structural design and synthesis methods of 2D sp
2
c-CPs are presented. Subsequently
the preparation strategies for 2D sp
2
c-CP films
primarily conducted by our research group are introduced. Moreover
the applications of 2D sp
2
c-CPs in seawater uranium extraction
osmotic energy generation
fluorescence sensing
proton conduction
and photocatalysis are summarized in detail. Finally
the review offers a perspective on the research of 2D
sp
2
c-CPs
encompassing modulation of crystal structure
exploration of novel synthesis methods
design of universal film synthesis strategies
and the expansion of related applications.
Namsheer K. ; Rout C. S. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications . RSC. Adv. , 2021 , 11 ( 10 ), 5659 - 5697 . doi: 10.1039/d0ra07800j http://dx.doi.org/10.1039/d0ra07800j
MacFarlane L. R. ; Shaikh H. ; Garcia-Hernandez J. D. ; Vespa M. ; Fukui T. ; Manners I. Functional nanopart icles through π -conjugated polymer self-assembly . Nat. Rev. Mater. , 2021 , 6 ( 1 ), 7 - 26 . doi: 10.1038/s41578-020-00233-4 http://dx.doi.org/10.1038/s41578-020-00233-4
Wang S. ; Sun Q. ; Gröning O. ; Widmer R. ; Pignedoli C. A. ; Cai L. ; Yu X. ; Yuan B. ; Li C. ; Ju H. ; Zhu J. ; Ruffieux P. ; Fasel R. ; Xu W. On-surface synthesis and characterization of individual polyacetylene chains . Nat. Chem. , 2019 , 11 ( 10 ), 924 - 930 . doi: 10.1038/s41557-019-0316-8 http://dx.doi.org/10.1038/s41557-019-0316-8
Darabi M. A. ; Khosrozadeh A. ; Mbeleck R. ; Liu Y. ; Chang Q. ; Jiang J. ; Cai J. ; Wang Q. ; Luo G. ; Xing M. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity , stretchability , and 3 D printability. Adv. Mater., 2017, 29 ( 31 ), 1700533 . doi: 10.1002/adma.201770228 http://dx.doi.org/10.1002/adma.201770228
Lee K. ; Cho S. ; Heum Park S. ; Heeger A. J. ; Lee C. W. ; Lee S. H. Metallic transport in polyaniline . Nature , 2006 , 441 ( 7089 ), 65 - 68 . doi: 10.1038/nature04705 http://dx.doi.org/10.1038/nature04705
Van de Burgt Y. ; Lubberman E. ; Fuller E. J. ; Keene S. T. ; Faria G. C. ; Agarwal S. ; Marinella M. J. ; Alec Talin A. ; Salleo A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing . Nat. Mater. , 2017 , 16 ( 4 ), 414 - 418 . doi: 10.1038/nmat4856 http://dx.doi.org/10.1038/nmat4856
邵世洋 , 丁军桥 , 王利祥 . 高分子发光材料研究进展 . 高分子学报 , 2018 , ( 2 ), 198 - 216 . doi: 10.11777/j.issn1000-3304.2018.17289 http://dx.doi.org/10.11777/j.issn1000-3304.2018.17289
张恩东 , 刘礼兵 , 吕凤婷 , 王树 . 水溶性共轭聚合物在生物传感中的应用 . 高分子学报 , 2018 , ( 2 ), 186 - 197 . doi: 10.11777/j.issn1000-3304.2018.17269 http://dx.doi.org/10.11777/j.issn1000-3304.2018.17269
Jiang Y. ; Dong X. ; Sun L. ; Liu T. ; Qin F. ; Xie C. ; Jiang P. ; Hu L. ; Lu X. ; Zhou X. ; Meng W. ; Li N. ; Brabec C. J. ; Zhou Y. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability . Nat. Energy , 2022 , 7 ( 4 ), 352 - 359 . doi: 10.1038/s41560-022-00997-9 http://dx.doi.org/10.1038/s41560-022-00997-9
Dong R. ; Zhang T. ; Feng X. Interface-assisted synthesis of 2materialsD: trend and challenges. Chem. Rev. , 2018 , 118 ( 13 ), 6189 - 6235 . doi: 10.1021/acs.chemrev.8b00056 http://dx.doi.org/10.1021/acs.chemrev.8b00056
Evans A. M. ; Strauss M. J. ; Corcos A. R. ; Hirani Z. ; Ji W. ; Hamachi L. S. ; Aguilar-Enriquez X. ; Chavez A. D. ; Smith B. J. ; Dichtel W. R. Two-dimensional polymers and polymerizations . Chem. Rev. , 2022 , 122 ( 1 ), 442 - 564 . doi: 10.1021/acs.chemrev.0c01184 http://dx.doi.org/10.1021/acs.chemrev.0c01184
Liang R. R. ; Jiang S. Y. ; A , R . H .; Zhao, X. Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. , 2020 , 49 ( 12 ), 3920 - 3951 . doi: 10.1039/d0cs00049c http://dx.doi.org/10.1039/d0cs00049c
Yuan S. ; Li X. ; Zhu J. ; Zhang G. ; van Puyvelde P. ; van der Bruggen B. Covalent organic frameworks for membrane separation . Chem. Soc. Rev. , 2019 , 48 ( 10 ), 2665 - 2681 . doi: 10.1039/c8cs00919h http://dx.doi.org/10.1039/c8cs00919h
DeBlase C. R. ; Silberstein K. E. ; Truong T. T. ; Abruna H. D. ; Dichtel W. R. β -Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage . J. Am. Chem. Soc. , 2013 , 135 ( 45 ), 16821 - 16824 . doi: 10.1021/ja409421d http://dx.doi.org/10.1021/ja409421d
Evans A. M. ; Bradshaw N. P. ; Litchfield B. ; Strauss M. J. ; Seckman B. ; Ryder M. R. ; Castano I. ; Gilmore C. ; Gianneschi N. C. ; Mulzer C. R. ; Hersam M. C. ; Dichtel W. R. High-sensitivity acoustic molecular sensors based on large-area, spray-coated 2D covalent organic frameworks . Adv. Mater. , 2020 , 32 ( 42 ), e 2004205 . doi: 10.1002/adma.202004205 http://dx.doi.org/10.1002/adma.202004205
Wang H. ; Zeng Z. ; Xu P. ; Li L. ; Zeng G. ; Xiao R. ; Tang Z. ; Huang D. ; Tang L. ; Lai C. ; Jiang D. ; Liu Y. ; Yi H. ; Qin L. ; Ye S. ; Ren X. ; Tang W. Recent progress in covalent organic framework thin films: fabrications, applications and perspectives . Chem. Soc. Rev. , 2019 , 48 ( 2 ), 488 - 516 . doi: 10.1039/c8cs00376a http://dx.doi.org/10.1039/c8cs00376a
Diercks C. S. ; Yaghi O. M. The atom, the molecule, and the covalent organic framework . Science , 2017 , 355 ( 6328 ), eaal 1585 . doi: 10.1126/science.aal1585 http://dx.doi.org/10.1126/science.aal1585
Geng K. ; He T. ; Liu R. ; Dalapati S. ; Tan K. T. ; Li Z. ; Tao S. ; Gong Y. ; Jiang Q. ; Jiang D. Covalent organic frameworks: design, synthesis, and functions . Chem. Rev. , 2020 , 120 ( 16 ), 8814 - 8933 . doi: 10.1021/acs.chemrev.9b00550 http://dx.doi.org/10.1021/acs.chemrev.9b00550
Huang N. ; Wang P. ; Jiang D. Covalent organic frameworks: a materials platform for structural and functional designs . Nat. Rev. Mater. , 2016 , 1 ( 10 ), 16068 . doi: 10.1038/natrevmats.2016.68 http://dx.doi.org/10.1038/natrevmats.2016.68
Liu R. ; Tan K. T. ; Gong Y. ; Chen Y. ; Li Z. ; Xie S. ; He T. ; Lu Z. ; Yang H. ; Jiang D. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications . Chem. Soc. Rev. , 2021 , 50 ( 1 ), 120 - 242 . doi: 10.1039/d0cs00620c http://dx.doi.org/10.1039/d0cs00620c
王珊 , 冯霄 , 王博 . 共价有机框架材料的设计与制备 . 科学通报 , 2018 , 63 ( 22 ), 2229 - 2245 .
Côté A. P. ; Benin A. I. ; Ockwig N. W. ; O'Keeffe M. ; Matzger A. J. ; Yaghi O. M. Porous, crystalline, covalent organic frameworks . Science , 2005 , 310 ( 5751 ), 1166 - 1170 . doi: 10.1126/science.1120411 http://dx.doi.org/10.1126/science.1120411
Han X. H. ; Gong K. ; Huang X. ; Yang J. W. ; Feng X. ; Xie J. ; Wang B. Syntheses of covalent organic frameworks via a one-pot suzuki coupling and schiff 's base reaction for C 2 H 4 /C 3 H 6 separation . Angew. Chem. Int. Ed., 2022, 61 ( 25 ), e 202202912 . doi: 10.1002/anie.202202912 http://dx.doi.org/10.1002/anie.202202912
Ying Y. ; Peh S. B. ; Yang H. ; Yang Z. ; Zhao D. Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation . Adv. Mater. , 2022 , 34 ( 25 ), 2104946 . doi: 10.1002/adma.202270191 http://dx.doi.org/10.1002/adma.202270191
Ying Y. ; Tong M. ; Ning S. ; Ravi S. K. ; Peh S. B. ; Tan S. C. ; Pennycook S. J. ; Zhao D. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation . J. Am. Chem. Soc. , 2020 , 142 ( 9 ), 4472 - 4480 . doi: 10.1021/jacs.9b13825 http://dx.doi.org/10.1021/jacs.9b13825
Zhang J. ; Liu L. ; Zheng C. ; Li W. ; Wang C. ; Wang T. Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks . Nat. Commun. , 2023 , 14 ( 1 ), 4922 . doi: 10.1038/s41467-023-40683-2 http://dx.doi.org/10.1038/s41467-023-40683-2
Zhang Z. ; Kang C. ; Peh S. B. ; Shi D. ; Yang F. ; Liu Q. ; Zhao D. Efficient adsorption of acetylene over CO 2 in bioinspired covalent organic frameworks . J. Am. Chem. Soc. , 2022 , 144 ( 33 ), 14992 - 14996 . doi: 10.1021/jacs.2c05309 http://dx.doi.org/10.1021/jacs.2c05309
Zhang Q. ; Gao S. ; Guo Y. ; Wang H. ; Wei J. ; Su X. ; Zhang H. ; Liu Z. ; Wang J. Designing covalent organic frameworks with Co-O 4 atomic sites for efficient CO 2 photoreduction . Nat. Commun., 2023, 14 ( 1 ), 1147 . doi: 10.1038/s41467-023-36779-4 http://dx.doi.org/10.1038/s41467-023-36779-4
Liu F. ; Zhou P. ; Hou Y. ; Tan H. ; Liang Y. ; Liang J. ; Zhang Q. ; Guo S. ; Tong M. ; Ni J. Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight . Nat. Commun. , 2023 , 14 ( 1 ), 4344 . doi: 10.1038/s41467-023-40007-4 http://dx.doi.org/10.1038/s41467-023-40007-4
Chen D. ; Chen W. ; Wu Y. ; Wang L. ; Wu X. ; Xu H. ; Chen L. Covalent organic frameworks containing dual O 2 reduction centers for overall photosynthetic hydrogen peroxide production . Angew. Chem. Int. Ed . 2023 , 62 , e 202217479 ;. doi: 10.1002/anie.202217479 http://dx.doi.org/10.1002/anie.202217479
Qian Y. ; Han Y. ; Zhang X. ; Yang G. ; Zhang G. ; Jiang H. Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis . Nat. Commun. , 2023 , 14 ( 1 ), 3083 . doi: 10.1038/s41467-023-38884-w http://dx.doi.org/10.1038/s41467-023-38884-w
He T. ; Zhao Z. ; Liu R. ; Liu X. ; Ni B. ; Wei Y. ; Wu Y. ; Yuan W. ; Peng H. ; Jiang Z. Zhao,Y. Porphyrin-based covalent organic frameworks anchoring au single atoms for photocatalytic nitrogen fixation . J. Am. Chem. Soc. 2023 , 145 ( 11 ), 6057 - 6066 . doi: 10.1021/jacs.2c10233 http://dx.doi.org/10.1021/jacs.2c10233
孔祥宇 , 廖力 , 卢灿忠 , 方千荣 . 共价有机框架-杂多酸复合材料用于非均相催化烯烃环氧化 . 高等学校化学学报 , 2023 , 44 ( 12 ), 34 - 41 .
Yang J. ; Tu B. ; Zhang G. ; Liu P. ; Hu K. ; Wang J. ; Yan Z. ; Huang Z. ; Fang M. ; Hou J. ; Fang Q. ; Qiu X. ; Li L. ; Tang Z. Advancing osmotic power generation by covalent organic framework monolayer . Nat. Nanotechnol. , 2022 , 17 ( 6 ), 622 - 628 . doi: 10.1038/s41565-022-01110-7 http://dx.doi.org/10.1038/s41565-022-01110-7
Yan X. ; Wang F. ; Su X. ; Ren J. ; Qi M. ; Bao P. ; Chen W. ; Peng C. ; Chen L. A redox-active covalent organic framework with highly accessible aniline-fused quinonoid units affords efficient proton charge storage . Adv. Mater. , 2023 , 35 , 2305037 . doi: 10.1002/adma.202305037 http://dx.doi.org/10.1002/adma.202305037
Xu Y. ; Cai P. ; Chen K. ; Chen Q. Wen, Z. Chen, L. Hybrid acid/alkali all covalent organic frameworks battery . Angew. Chem. Int. Ed. , 2023 , 62 , e202215584 . doi: 10.1002/anie.202215584 http://dx.doi.org/10.1002/anie.202215584
Hou S. ; Ji W. ; Chen J. ; Teng Y. ; Wen L. ; Jiang L. Free-standing covalent organic framework membrane for high-efficiency salinity gradient energy conversion . Angew. Chem. Int. Ed. , 2021 , 60 ( 18 ), 9925 - 9930 . doi: 10.1002/anie.202100205 http://dx.doi.org/10.1002/anie.202100205
Xian W. ; Zuo X. ; Zhu C. ; Guo Q. ; Meng Q. W. ; Zhu X. ; Wang S. ; Ma S. ; Sun Q. Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations . Nat. Commun. , 2022 , 13 ( 1 ), 3386 . doi: 10.1038/s41467-022-31183-w http://dx.doi.org/10.1038/s41467-022-31183-w
Chen S. ; Zhu C. ; Xian W. ; Liu X. ; Liu X. ; Zhang Q. ; Ma S. ; Sun Q. Imparting ion selectivity to covalent organic framework membranes using de novo assembly for blue energy harvesting . J. Am. Chem. Soc. , 2021 , 143 ( 25 ), 9415 - 9422 . doi: 10.1021/jacs.1c02090 http://dx.doi.org/10.1021/jacs.1c02090
Rashid R. B. ; Evans A. M. ; Hall L. A. ; Dasari R. R. ; Roesner E. K. ; Marder S. R. ; D'Allesandro D. M. ; Dichtel W. R. ; Rivnay J. A semiconducting two-dimensional polymer as an organic electrochemical transistor active layer . Adv. Mater. , 2022 , 34 ( 21 ), 2110703 . doi: 10.1002/adma.202110703 http://dx.doi.org/10.1002/adma.202110703
Li C. ; Wang Y. ; Zou Y. ; Zhang X. ; Dong H. ; Hu W. Two-dimensional conjugated polymer synthesized by interfacial suzuki reaction: towards electronic device applications . Angew. Chem. Int. Ed. , 2020 , 59 ( 24 ), 9403 - 9407 . doi: 10.1002/anie.202002644 http://dx.doi.org/10.1002/anie.202002644
Cheng G. ; Zhang A. ; Zhao Z. ; Chai Z. ; Hu B. ; Han B. ; Ai Y. ; Wang X. Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity . Sci. Bull. , 2021 , 66 ( 19 ), 1994 - 2001 . doi: 10.1016/j.scib.2021.05.012 http://dx.doi.org/10.1016/j.scib.2021.05.012
Yang H. ; Hao M. ; Xie Y. ; Liu X. ; Liu Y. ; Chen Z. ; Wang X. ; Waterhouse G. I. N. ; Ma S. Tuning local charge distribution in multicomponent covalent organic frameworks for dramatically enhanced photocatalytic uranium extraction . Angew. Chem. Int. Ed. , 2023 , 62 ( 30 ), e 202303129 . doi: 10.1002/anie.202303129 http://dx.doi.org/10.1002/anie.202303129
Chen Z. ; Wang J. ; Hao M. ; Xie Y. ; Liu X. ; Yang H. ; Waterhouse G. I. N. ; Wang X. ; Ma S. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance . Nat. Commun. , 2023 , 14 ( 1 ), 1106 . doi: 10.1038/s41467-023-36710-x http://dx.doi.org/10.1038/s41467-023-36710-x
He T. ; Geng K. ; Jiang D. All sp 2 carbon covalent organic frameworks . Trends. Chem. , 2021 , 3 ( 6 ), 431 - 444 . doi: 10.1016/j.trechm.2021.03.008 http://dx.doi.org/10.1016/j.trechm.2021.03.008
Xu S. ; Richter M. ; Feng X. Vinylene-linked two-dimensional covalent organic frameworks: synthesis and functions . Acc. Mater. Res. , 2021 , 2 ( 4 ), 252 - 265 . doi: 10.1021/accountsmr.1c00017 http://dx.doi.org/10.1021/accountsmr.1c00017
Zhang, T.; Zhang, G.; Chen, L. 2D conjugated covalent organic frameworks: defined synthesis and tailor-made functions . Acc. Chem. Res. , 2022 , 55 ( 6 ), 795 - 808 . doi: 10.1021/acs.accounts.1c00693 http://dx.doi.org/10.1021/acs.accounts.1c00693
Xu Y. ; Ren G. ; Zhang D. ; Sun L. ; Zhao Y. Fully conjugated covalent organic frameworks: synthesis, structures and applications . Chinese J. Chem. , 2023 , 41 ( 23 ), 3447 - 3472 . doi: 10.1002/cjoc.202300244 http://dx.doi.org/10.1002/cjoc.202300244
刘建川 , 李翠艳 , 刘耀祖 , 王钰杰 , 方千荣 . 高稳定二维联咔唑sp 2 碳共轭共价有机框架材料用于高效电催化氧还原 . 化学学报 , 2023 , 81 ( 8 ), 884 - 890 .
魏颖 , 王家成 , 李玥 , 汪涛 , 马述威 , 解令海 . 碳碳键链接的二维共价有机框架研究进展 . 化学学报 , 2024 , 82 ( 1 ), 75 - 102 .
Acharjya A. ; Pachfule P. ; Roeser J. ; Schmitt F. J. ; Thomas A. Vinylene-linked covalent organic frameworks by base-catalyzed aldol condensation . Angew. Chem. Int. Ed. , 2019 , 58 ( 42 ), 14865 - 14870 . doi: 10.1002/anie.201905886 http://dx.doi.org/10.1002/anie.201905886
Jadhav T. ; Fang Y. ; Liu C. H. ; Dadvand A. ; Hamzehpoor E. ; Patterson W. ; Jonderian A. ; Stein R. S. ; Perepichka D. F. Transformation between 2D and 3D covalent organic frameworks via reversible [2+2 ] cycloaddition. J. Am. Chem. Soc. , 2020 , 142 ( 19 ), 8862 - 8870 . doi: 10.1021/jacs.0c01990 http://dx.doi.org/10.1021/jacs.0c01990
Mo C. ; Yang M. ; Sun F. ; Jian J. ; Zhong L. ; Fang Z. ; Feng J. ; Yu D. Alkene-linked covalent organic frameworks boosting photocatalytic hydrogen evolution by efficient charge separation and transfer in the presence of sacrificial electron donors . Adv. Sci. 2020 , 7 , 1902988 . doi: 10.1002/advs.201902988 http://dx.doi.org/10.1002/advs.201902988
Cui W. R. ; Zhang C. R. ; Jiang W. ; Li F. F. ; Liang R. P. ; Liu J. ; Qiu J. D. Regenerable and stable sp 2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium . Nat. Commun. , 2020 , 11 ( 1 ), 436 . doi: 10.1038/s41467-020-14289-x http://dx.doi.org/10.1038/s41467-020-14289-x
Ma S. ; Deng T. ; Li Z. ; Zhang Z. ; Jia J. ; Wu G. ; Xia H. ; Yang S. W. ; Liu X. Photocatalytic hydrogen production on a sp 2 -carbon-linked covalent organic framework . Angew. Chem. Int. Ed. , 2022 , 61 ( 42 ), e 202208919 . doi: 10.1002/anie.202208919 http://dx.doi.org/10.1002/anie.202208919
Zhu L. ; Zhang Q. ; Meng F. ; Li M. ; Liang Q. ; Zhang F. Narrow‐pore engineering of vinylene‐linked covalent organic frameworks with weak interaction‐triggered multiple responses . Angew. Chem. Int. Ed. , 2023 , 135 ( 42 ), e 202309125 . doi: 10.1002/anie.202309125 http://dx.doi.org/10.1002/anie.202309125
Wang Z. ; Yang Y. ; Zhao Z. ; Zhang P. ; Zhang Y. ; Liu J. ; Ma S. ; Cheng P. ; Chen Y. ; Zhang Z. Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications . Nat. Commun. , 2021 , 12 ( 1 ), 1982 . doi: 10.1038/s41467-021-22288-9 http://dx.doi.org/10.1038/s41467-021-22288-9
Dai L. ; Dong A. ; Meng X. ; Liu H. ; Li Y. ; Li P. ; Wang B. Enhancement of visible-light-driven hydrogen evolution activity of 2d pi-conjugated bipyridine-based covalent organic frameworks via post-protonation . Angew. Chem. Int. Ed. , 2023 , 62 ( 15 ), e 202300224 . doi: 10.1002/anie.202300224 http://dx.doi.org/10.1002/anie.202300224
Jadhav T. ; Fang Y. ; Patterson W. ; Liu C. H. ; Hamzehpoor E. ; Perepichka D. F. 2 D poly(arylene vinylene) covalent organic frameworks via aldol condensation of trimethyltriazine . Angew. Chem. Int. Ed. , 2019, 58 ( 39 ), 13753 - 13757 . doi: 10.1002/anie.201906976 http://dx.doi.org/10.1002/anie.201906976
Zhuang X. ; Zhao W. ; Zhang F. ; Cao Y. ; Liu F. ; Bi S. ; Feng X. A two-dimensional conjugated polymer framework with fully sp 2 -bonded carbon skeleton . Polym. Chem. , 2016 , 7 ( 25 ), 4176 - 4181 . doi: 10.1039/c6py00561f http://dx.doi.org/10.1039/c6py00561f
Jin E. ; Asada M. ; Xu Q. ; Dalapati S. ; Addicoat M. A. ; Brady M. A. ; Xu H. ; Nakamura T. ; Heine T. ; Chen Q. ; Jiang D. Two-dimensional sp 2 carbon-conjugated covalent organic frameworks . Science , 2017 , 357 ( 6352 ), 673 - 676 . doi: 10.1126/science.aan0202 http://dx.doi.org/10.1126/science.aan0202
Xu J. ; He Y. ; Bi S. ; Wang M. ; Yang P. ; Wu D. ; Wang J. ; Zhang F. An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor . Angew. Chem. Int. Ed. , 2019 , 58 ( 35 ), 12065 - 12069 . doi: 10.1002/anie.201905713 http://dx.doi.org/10.1002/anie.201905713
Lyu H. ; Diercks C. S. ; Zhu C. ; Yaghi O. M. Porous crystalline olefin-linked covalent organic frameworks . J. Am. Chem. Soc. , 2019 , 141 ( 17 ), 6848 - 6852 . doi: 10.1021/jacs.9b02848 http://dx.doi.org/10.1021/jacs.9b02848
Wang Z. ; Zhang Y. ; Lin E. ; Geng S. ; Wang M. ; Liu J. ; Chen Y. ; Cheng P. ; Zhang Z. Kilogram-scale fabrication of a robust olefin-linked covalent organic framework for separating ethylene from a ternary C 2 hydrocarbon mixture . J. Am. Chem. Soc. , 2023 , 145 ( 39 ), 21483 - 21490 . doi: 10.1021/jacs.3c07224 http://dx.doi.org/10.1021/jacs.3c07224
Pastoetter D. L. ; Xu S. ; Borrelli M. ; Addicoat M. ; Biswal B. P. ; Paasch S. ; Dianat A. ; Thomas H. ; Berger R. ; Reineke S. ; Brunner E. ; Cuniberti G. ; Richter M. ; Feng X. Synthesis of vinylene-linked two-dimensional conjugated polymers via the horner-wadsworth-emmons reaction . Angew. Chem. Int. Ed. , 2020 , 59 ( 52 ), 23620 - 23625 . doi: 10.1002/anie.202010398 http://dx.doi.org/10.1002/anie.202010398
Li S. ; Geng Y. ; Teng B. ; Xu S. ; Petkov P. S. ; Liao Z. ; Jost B. ; Liu Y. ; Feng X. ; Wu B. ; Zhang T. Nature-inspired pyrylium cation-based vinylene-linked two-dimensional covalent organic framework for efficient sunlight-driven water purification . Chem. Mater. , 2023 , 35 ( 4 ), 1594 - 1600 . doi: 10.1021/acs.chemmater.2c03083 http://dx.doi.org/10.1021/acs.chemmater.2c03083
Fu G. ; Yang D. ; Xu S. ; Li S. ; Zhao Y. ; Yang H. ; Wu D. ; Petkov P. S. ; Lan Z. ; Wang X. ; Zhang T. Construction of thiadiazole-bridged sp 2 -carbon-conjugated co-valent organic frameworks with diminished excitation binding energy toward superior photocatalysis . J. Am. Chem. Soc. , 2024 , 146 , 2 , 1318 - 1325 . doi: 10.1021/jacs.3c08755 http://dx.doi.org/10.1021/jacs.3c08755
Li S. ; Ma R. ; Xu S. ; Zheng T. ; Fu G. ; Wu Y. ; Liao Z. ; Kuang Y. ; Hou Y. ; Wang D. ; Petkov P. S. ; Simeonova K. ; Feng X. ; Wu L. Z. ; Li X. B. ; Zhang T. Direct construction of isomeric benzobisoxazole-vinylene-linked covalent organic frameworks with distinct photocatalytic properties . J. Am. Chem. Soc. , 2022 , 144 ( 30 ), 13953 - 13960 . doi: 10.1021/jacs.2c06042 http://dx.doi.org/10.1021/jacs.2c06042
Wu D. ; Che Q. ; He H. ; El-Khouly M. E. ; Huang S. ; Zhuang X. ; Zhang B. ; Chen Y. Room-temperature interfacial synthesis of vinylene-bridged two-dimensional covalent organic framework thin film for nonvolatile memory . ACS Mater. , 2023 , 5 ( 3 ), 874 - 883 . doi: 10.1021/acsmaterialslett.2c01047 http://dx.doi.org/10.1021/acsmaterialslett.2c01047
Wang K. ; Yang H. ; Liao Z. ; Li S. ; Hambsch M. ; Fu G. ; Mannsfeld S. C. B. ; Sun Q. ; Zhang T. Monolayer-assisted surface-initiated schiff-base-mediated aldol polycondensation for the synthesis of crystalline sp 2 carbon-conjugated covalent organic framework thin films . J. Am. Chem. Soc. , 2023 , 145 ( 9 ), 5203 - 5210 . doi: 10.1021/jacs.2c12186 http://dx.doi.org/10.1021/jacs.2c12186
Yan H. ; Kou Z. ; Li S. ; Zhang T. Synthesis of sp 2 carbon-conjugated covalent organic framework thin-films via copper-surface-mediated knoevenagel polycondensation . Small , 2023 , 19 ( 35 ), 2207972 . doi: 10.1002/smll.202207972 http://dx.doi.org/10.1002/smll.202207972
蒋成浩 , 冯霄 , 王博 . 共价有机框架膜的制备及其在海水淡化和水处理领域的研究进展 . 化学学报 , 2020 , 78 ( 6 ), 466 - 477 .
许方依 , 彭宇 , 宋君杰 , 苏保卫 . 共价有机框架材料在分离膜制备中的应用研究进展 . 膜科学与技术 , 2023 , 43 ( 5 ), 136 - 149 .
Zhao Y. ; Li S. ; Fu G. ; Yang H. ; Li S. ; Wu D. ; Zhang T. Construction of layer-blocked covalent organic framework heterogenous films via surface-initiated polycondensations with strongly enhanced photocatalytic properties . ACS Cent. Sci. , 2024 , Doi: 10.1021/acscentsci.3c01195. http://dx.doi.org/10.1021/acscentsci.3c01195.
She P. ; Qin Y. ; Wang X. ; Zhang Q. Recent progress in external-stimulus-responsive 2D covalent organic frameworks . Adv. Mater. , 2022 , 34 ( 22 ), e 2101175 . doi: 10.1002/adma.202101175 http://dx.doi.org/10.1002/adma.202101175
Zhao X. ; Pachfule P. ; Thomas A. Covalent organic frameworks (COFs) for electrochemical applications . Chem. Soc. Rev. , 2021 , 50 ( 12 ), 6871 - 6913 . doi: 10.1039/d0cs01569e http://dx.doi.org/10.1039/d0cs01569e
Guo L. ; Yang L. ; Li M. ; Kuang L. ; Song Y. ; Wang L. Covalent organic frameworks for fluorescent sensing: recent developments and future challenges . Coord. Chem. Rev. , 2021 , 440 , 213957 . doi: 10.1016/j.ccr.2021.213957 http://dx.doi.org/10.1016/j.ccr.2021.213957
Xu S. ; Sun H. ; Addicoat M. ; Biswal B. ; He F. ; Park S. ; Paasch S. ; Zhang T. ; Sheng W. ; Brunner E. ; Hou Y. ; Richter M. ; Feng X. Thiophene-bridged donor-acceptor sp 2 -carbon-linked 2 D Conjugated polymers as photocathodes for water reduction . Adv. Mater., 2021, 33 , 2006274 . doi: 10.1002/adma.202006274 http://dx.doi.org/10.1002/adma.202006274
Wang Y. ; Hao W. ; Liu H. ; Chen R. ; Pan Q. ; Li Z. ; Zhao Y. Facile construction of fully sp 2 -carbon conjugated two-dimensional covalent organic frameworks containing benzobisthiazole units . Nat. Commun. , 2022 , 13 , 100 . doi: 10.1038/s41467-021-27573-1 http://dx.doi.org/10.1038/s41467-021-27573-1
Li Z. ; Deng T. ; Ma S. ; Zhang Z. ; Wu G. ; Wang J. ; Li Q. ; Xia H. ; Yang S. ; Liu X. Three-component donor- π -acceptor covalent-organic frameworks for boosting photocatalytic hydrogen evolution . J. Am. Chem. Soc. , 2023 , 145 ( 15 ), 8364 - 8374 .
Jin E. ; Geng K. ; Lee K. H. ; Jiang W. ; Li J. ; Jiang Q. ; Irle S. ; Jiang D. Topology-templated synthesis of crystalline porous covalent organic frameworks . Angew. Chem. Int. Ed. , 2020 , 59 ( 29 ), 12162 - 12169 . doi: 10.1002/anie.202004728 http://dx.doi.org/10.1002/anie.202004728
Chen R. ; Shi J. L. ; Ma Y. ; Lin G. ; Lang X. ; Wang C. Designed synthesis of a 2 D porphyrin-based sp 2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis . Angew. Chem. Int. Ed., 2019, 58 ( 19 ), 6430 - 6434 . doi: 10.1002/anie.201902543 http://dx.doi.org/10.1002/anie.201902543
Li S. ; Ma R. ; Xu S. ; Zheng T. ; Wang H. ; Fu G. ; Yang H. ; Hou Y. ; Liao Z. ; Wu B. ; Feng X. ; Wu L. Z. ; Li X. B. ; Zhang T. Two-dimensional benzobisthiazole-vinylene-linked covalent organic frameworks outperform one-dimensional counterparts in photocatalysis . ACS Catal. , 2023 , 13 ( 2 ), 1089 - 1096 . doi: 10.1021/acscatal.2c05023 http://dx.doi.org/10.1021/acscatal.2c05023
Niu C. , Zhang C. , Liu X. , Liang R. , Qiu J. Synthesis of propenone-linked covalent organic frameworks via claisen-schmidt reaction for photocatalytic removal of uranium . Nat. Commun. , 2023 , 14 , 4420 . doi: 10.1038/s41467-023-40169-1 http://dx.doi.org/10.1038/s41467-023-40169-1
Yang H. ; Zhang T. ; Xue Q. Recent advances in single-crystalline two-dimensional polymers: synthesis, characterization and challenges . Chin. Chem. Lett , 2022 , 33 ( 12 ), 4989 - 5000 . doi: 10.1016/j.cclet.2022.02.030 http://dx.doi.org/10.1016/j.cclet.2022.02.030
Zhou Y. ; Jiang L. Bioinspired nanoporous membrane for salinity gradient energy harvesting . Joule , 2020 , 4 ( 11 ), 2244 - 2248 . doi: 10.1016/j.joule.2020.09.009 http://dx.doi.org/10.1016/j.joule.2020.09.009
Aliprandi A. ; Pakulski D. ; Ciesielski A. ; Samorì P. Punctured two-dimensional sheets for harvesting blue energy . ACS Nano , 2017 , 11 , 10654 - 10658 . doi: 10.1021/acsnano.7b06657 http://dx.doi.org/10.1021/acsnano.7b06657
Park H. B. ; Kamcev J. ; Robeson L. M. ; Elimelech M. ; Freeman B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity . Science , 2017 , 356 ( 6343 ), eaab 0530 . doi: 10.1126/science.aab0530 http://dx.doi.org/10.1126/science.aab0530
Zhang Z. ; Wen L. ; Jiang L. Nanofluidics for osmotic energy conversion . Nat. Rev. Mater. , 2021 , 6 , 622 - 639 . doi: 10.1038/s41578-021-00300-4 http://dx.doi.org/10.1038/s41578-021-00300-4
Guo Q. ; Lai Z. ; Zuo X. ; Xian W. ; Wu S. ; Zheng L. ; Dai Z. ; Wang S. ; Sun Q. Photoelectric responsive ionic channel for sustainable energy harvesting . Nat. Commun. , 2023 , 14 , 6702 . doi: 10.1038/s41467-023-42584-w http://dx.doi.org/10.1038/s41467-023-42584-w
Zhang L. ; Wan S. C. ; Zhang J. ; Zhang M. J. ; Yang Q. C. ; Zhang B. ; Wang W. Y. ; Sun J. ; Kwok R. T. K. ; Lam J. W. Y. ; Deng H. ; Sun Z. J. ; Tang B. Z. Activation of pyroptosis using aiegen-based sp 2 carbon-linked covalent organic frameworks . J. Am. Chem. Soc. , 2023 , 145 ( 32 ), 17689 - 17699 . doi: 10.1021/jacs.3c04027 http://dx.doi.org/10.1021/jacs.3c04027
Fabozzi F. G. ; Severin N. ; Rabe J. P. ; Hecht S. Room temperature on-surface synthesis of a vinylene-linked single layer covalent organic framework . J. Am. Chem. Soc. , 2023 , 145 ( 33 ), 18205 - 18209 . doi: 10.1021/jacs.3c04730 http://dx.doi.org/10.1021/jacs.3c04730
Lin H. ; Liu Y. ; Wang Z. ; Ling L. ; Huang H. ; Li Q. ; Cheng L. ; Li Y. ; Zhou J. ; Wu K. ; Zhang J. ; Zhou T. Enhanced CO 2 photoreduction through spontaneous charge separation in end-capping assembly of heterostructured covalent-organic frameworks . Angew. Chem. Int. Ed. , 2022 , 61 ( 50 ), e 202214142 . doi: 10.1002/anie.202214142 http://dx.doi.org/10.1002/anie.202214142
Cheng Y. Z. ; Ji W. ; Hao P. Y. ; Qi X. H. ; Wu X. ; Dou X. M. ; Bian X. Y. ; Jiang D. ; Li F. T. ; Liu X. F. ; Yang D. H. ; Ding X. ; Han B. H. A fully conjugated covalent organic framework with oxidative and reductive sites for photocatalytic carbon dioxide reduction with water . Angew. Chem. Int. Ed. , 2023 , 62 ( 36 ), e 202308523 . doi: 10.1002/anie.202308523 http://dx.doi.org/10.1002/anie.202308523
Ding S. Y. ; Dong M. ; Wang Y. W. ; Chen Y. T. ; Wang H. Z. ; Su C. Y. ; Wang W. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(ii) . J. Am. Chem. Soc. , 2016 , 138 ( 9 ), 3031 - 3037 . doi: 10.1021/jacs.5b10754 http://dx.doi.org/10.1021/jacs.5b10754
Jhulki S. ; Evans A. M. ; Hao X. L. ; Cooper M. W. ; Feriante C. H. ; Leisen J. ; Li H. ; Lam D. ; Hersam M. C. ; Barlow S. ; Bredas J. L. ; Dichtel W. R. ; Marder S. R. Humidity sensing through reversible isomerization of a covalent organic framework . J. Am. Chem. Soc. , 2020 , 142 ( 2 ), 783 - 791 . doi: 10.1021/jacs.9b08628 http://dx.doi.org/10.1021/jacs.9b08628
Li X. ; Yadav P. ; Loh K. P. Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks—from 3solids toD 2D sheets. Chem. Soc. Rev. , 2020 , 49 ( 14 ), 4835 - 4866 . doi: 10.1039/d0cs00236d http://dx.doi.org/10.1039/d0cs00236d
Zhang H. ; Shen P. K. Advances in the high performance polymer electrolyte membranes for fuel cells . Chem. Soc. Rev. , 2012 , 41 ( 6 ), 2382 - 2394 . doi: 10.1039/c2cs15269j http://dx.doi.org/10.1039/c2cs15269j
Montoro C. ; Rodriguez-San-Miguel D. ; Polo E. ; Escudero-Cid R. ; Ruiz-Gonzalez M. L. ; Navarro J. A. R. ; Ocon P. ; Zamora F. Ionic conductivity and potential application for fuel cell of a modified imine-based covalent organic framework . J. Am. Chem. Soc. , 2017 , 139 ( 29 ), 10079 - 10086 . doi: 10.1021/jacs.7b05182 http://dx.doi.org/10.1021/jacs.7b05182
Xie Z. ; Wang B. ; Yang Z. ; Yang X. ; Yu X. ; Xing G. ; Zhang Y. ; Chen L. Stable 2D heteroporous covalent organic frameworks for efficient ionic conduction . Angew. Chem. Int. Ed. , 2019 , 58 ( 44 ), 15742 - 15746 . doi: 10.1002/anie.201909554 http://dx.doi.org/10.1002/anie.201909554
Shi B. ; Pang X. ; Lyu B. ; Wu H. ; Shen J. ; Guan J. ; Wang X. ; Fan C. ; Cao L. ; Zhu T. ; Kong Y. ; Liu Y. ; Jiang Z. Spacer-engineered ionic channels in covalent organic framework membranes toward ultrafast proton transport . Adv. Mater . 2023 , 35 , 2211004 . doi: 10.1002/adma.202211004 http://dx.doi.org/10.1002/adma.202211004
Jin E. ; Li J. ; Geng K. ; Jiang Q. ; Xu H. ; Xu Q. ; Jiang D. Designed synthesis of stable light-emitting two-dimensional sp 2 carbon-conjugated covalent organic frameworks . Nat. Commun. , 2018 , 9 , 4143 . doi: 10.1038/s41467-018-06719-8 http://dx.doi.org/10.1038/s41467-018-06719-8
0
Views
1019
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution