浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200438
Xiang-cheng Pan, E-mail: panxc@fudan.edu.cn
Published:20 July 2024,
Published Online:10 April 2024,
Received:12 January 2024,
Accepted:22 February 2024
移动端阅览
云杰, 徐超然, 谢志康, 杜昱璇, 董进, 潘翔城. 基于硼酸酯标签制备具有精确侧基结构的可控聚合物. 高分子学报, 2024, 55(7), 881-890
Yun, J.; Xu, C. R.; Xie, Z. K.; Du, Y. X.; Dong, J.; Pan, X. C. Synthesis of controllable polymers with precise side-chain structures via boronate-tag. Acta Polymerica Sinica, 2024, 55(7), 881-890
云杰, 徐超然, 谢志康, 杜昱璇, 董进, 潘翔城. 基于硼酸酯标签制备具有精确侧基结构的可控聚合物. 高分子学报, 2024, 55(7), 881-890 DOI: 10.11777/j.issn1000-3304.2024.24009.
Yun, J.; Xu, C. R.; Xie, Z. K.; Du, Y. X.; Dong, J.; Pan, X. C. Synthesis of controllable polymers with precise side-chain structures via boronate-tag. Acta Polymerica Sinica, 2024, 55(7), 881-890 DOI: 10.11777/j.issn1000-3304.2024.24009.
结构精确的聚合物在生物医药、信息储存、分级组装等领域具有重要作用,而其制备一直是高分子合成领域的挑战之一. 本工作基于
N
-甲基亚氨二乙酸(MIDA)硼酸酯作为液相迭代合成中的标签,制备了4种不同结构的噻吩-苯基侧基的单体,对其经可控自由基聚合制备得精确侧基结构的聚合物. 聚合物的紫外可见光谱和荧光发射光谱显示了不同侧基结构聚合物具有不同的光学性质,而这些聚合物在热性质和结晶性质方面呈现相似性,这来源于其相同的主链结构和同种成分的侧基. 建立了MIDA硼酸酯标签合成精确侧基单体的方法,为实现聚合物侧基的精准调控提供了思路和可行方法.
Polymers with precise structures possess important roles in biomedicine
information storage
hierarchical assembly
etc
.
w
hile their preparation has always been a challenge in the field of polymer synthesis.
N
-Methyliminodiacetic acid (MIDA) boronates
employed as tags in liquid-phase iterative synthesis
were widely utilized in Suzuki-Miyaura coupling reactions as stable boronic acid precursors for the construction of a variety of organic molecules. In this study
four monomers with different structures of thiophene-phenyl side chains were prepared based on MIDA boronates tags. Precise aryl side-chain linkages were created through several coupling reactions between boronic acids and aryl bromides containing MIDA boronates. Further MIDA boronates can be converted into hydroxyl functional groups
allowing for further modification and introduction of vinyl functional groups to synthesize polymerizable monomers. Different monomers were employed in the controlled radical polymerization to yield polymers with precisely controlled side-chain structures. UV-Vis and fluorescence spectra of the polymers revealed distinct optical properties based on different side-chain structures
while similarities in thermal and crystalline properties were observed due to their identical main-chain structures and similar side-chain compositions. This work establishes a methodology for synthesizing precisely controlled side-chain monomers using MIDA boronate labels
providing insights and feasible approaches for the accurate modulation of polymer side chains.
序列精准聚合物硼酸酯可控/活性聚合
Sequence-defined polymersBoronic acid esterControlled/living polymerization
Colquhoun H.; Lutz J. F. Information-containing macromolecules. Nat. Chem., 2014, 6, 455-456. doi:10.1038/nchem.1958http://dx.doi.org/10.1038/nchem.1958
Liu S. Y. Challenges and opportunities of precision polymer chemistry. Chinese J. Polym. Sci., 2022, 40(10), 1129-1130. doi:10.1007/s10118-022-2863-5http://dx.doi.org/10.1007/s10118-022-2863-5
Du Y. X.; Dong J.; Xu C. R.; Pan X. C. Organoboron chemistry towards controlled and precise polymer synthesis. Sci. China Chem., 2023, 66(12), 3467-3483. doi:10.1007/s11426-023-1797-1http://dx.doi.org/10.1007/s11426-023-1797-1
Lutz J. F.; Lehn J. M.; Meijer E. W.; Matyjaszewski K. From precision polymers to complex materials and systems. Nat. Rev. Mater., 2016, 1(5), 16024. doi:10.1038/natrevmats.2016.24http://dx.doi.org/10.1038/natrevmats.2016.24
Szwarc, M. 'Living' polymers. Nature, 1956, 178, 1168-1169. doi:10.1038/1781168a0http://dx.doi.org/10.1038/1781168a0
Hawker C. J.; Bosman A. W.; Harth E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev., 2001, 101(12), 3661-3688. doi:10.1021/cr990119uhttp://dx.doi.org/10.1021/cr990119u
Wang J. S.; Matyjaszewski K. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc., 1995, 117(20), 5614-5615. doi:10.1021/ja00125a035http://dx.doi.org/10.1021/ja00125a035
Pan X. C.; Fantin M.; Yuan F.; Matyjaszewski K. Externally controlled atom transfer radical polymerization. Chem. Soc. Rev., 2018, 47(14), 5457-5490. doi:10.1039/c8cs00259bhttp://dx.doi.org/10.1039/c8cs00259b
Lorandi F.; Fantin M.; Matyjaszewski K. Atom transfer radical polymerization: a mechanistic perspective. J. Am. Chem. Soc., 2022, 144(34), 15413-15430. doi:10.1021/jacs.2c05364http://dx.doi.org/10.1021/jacs.2c05364
Perrier, S. 50th Anniversary perspective: RAFT polymerization—a user guide. Macromolecules, 2017, 50(19), 7433-7447. doi:10.1021/acs.macromol.7b00767http://dx.doi.org/10.1021/acs.macromol.7b00767
Webster O. W. The discovery and commercialization of group transfer polymerization. J. Polym. Sci. A Polym. Chem., 2000, 38(16), 2855-2860. doi:10.1002/1099-0518(20000815)38:16<2855::aid-pola10>3.3.co;2-jhttp://dx.doi.org/10.1002/1099-0518(20000815)38:16<2855::aid-pola10>3.3.co;2-j
Nguyen S. T.; Johnson L. K.; Grubbs R. H.; Ziller J. W. Ring-opening metathesis polymerization (ROMP) of norbornene by a group VIII carbene complex in protic media. J. Am. Chem. Soc., 1992, 114(10), 3974-3975. doi:10.1021/ja00036a053http://dx.doi.org/10.1021/ja00036a053
Huang Z. J.; Chen Z.; Jiang Y.; Li N.; Yang S. C.; Wang G. W.; Pan X. C. Metal-free hydrosilylation polymerization by merging photoredox and hydrogen atom transfer catalysis. J. Am. Chem. Soc., 2021, 143(45), 19167-19177. doi:10.1021/jacs.1c09263http://dx.doi.org/10.1021/jacs.1c09263
Lutz J. F.; Ouchi M.; Liu D. R.; Sawamoto M. Sequence-controlled polymers. Science, 2013, 341(6146), 1238149. doi:10.1126/science.1238149http://dx.doi.org/10.1126/science.1238149
张留乔, 黄智豪, 张正彪, 朱秀林. 序列可控高分子的合成及应用. 高分子学报, 2018, (9), 1144-1154. doi:10.11777/j.issn1000-3304.2018.18101http://dx.doi.org/10.11777/j.issn1000-3304.2018.18101
Merrifield R. B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85(14), 2149-2154. doi:10.1021/ja00897a025http://dx.doi.org/10.1021/ja00897a025
Engelis N. G.; Anastasaki A.; Nurumbetov G.; Truong N. P.; Nikolaou V.; Shegiwal A.; Whittaker M. R.; Davis T. P.; Haddleton D. M. Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization. Nat. Chem., 2017, 9(2), 171-178. doi:10.1038/nchem.2634http://dx.doi.org/10.1038/nchem.2634
Porel M.; Alabi C. A. Sequence-defined polymers via orthogonal allyl acrylamide building blocks. J. Am. Chem. Soc., 2014, 136(38), 13162-13165. doi:10.1021/ja507262thttp://dx.doi.org/10.1021/ja507262t
Xu C. R.; Dong J.; He C. Z.; Yun J.; Pan X. C. Precise control of conjugated polymer synthesis from step-growth polymerization to iterative synthesis. Giant, 2023, 14, 100154. doi:10.1016/j.giant.2023.100154http://dx.doi.org/10.1016/j.giant.2023.100154
Yin J. L.; Choi S.; Pyle D.; Guest J. R.; Dong G. B. Backbone engineering of monodisperse conjugated polymers via integrated iterative binomial synthesis. J. Am. Chem. Soc., 2023, 145(34), 19120-19128. doi:10.1021/jacs.3c08143http://dx.doi.org/10.1021/jacs.3c08143
Barnes J. C.; Ehrlich D. J. C.; Gao A. X.; Leibfarth F. A.; Jiang Y.; Zhou E.; Jamison T. F.; Johnson J. A. Iterative exponential growth of stereo- and sequence-controlled polymers. Nat. Chem., 2015, 7(10), 810-815. doi:10.1038/nchem.2346http://dx.doi.org/10.1038/nchem.2346
Xu J. T.; Shanmugam S.; Fu C. K.; Aguey-Zinsou K. F.; Boyer C. Selective photoactivation: from a single unit monomer insertion reaction to controlled polymer architectures. J. Am. Chem. Soc., 2016, 138(9), 3094-3106. doi:10.1021/jacs.5b12408http://dx.doi.org/10.1021/jacs.5b12408
Tao W.; He W.; Feng X. P.; Liu G. Q.; Shi Q. Q.; Tan J. J.; Hu J. M.; Yang S.; Liu G. H.; Yang R. H. Cationic single-unit monomer insertion (cSUMI): from discrete oligomers to the α-/ω-end and in-chain sequence-regulated polymers. J. Am. Chem. Soc., 2023, 145(6), 3636-3646. doi:10.1021/jacs.2c12873http://dx.doi.org/10.1021/jacs.2c12873
Liu R. Z.; Zhang L.; Guo K. K.; Xu J. T. Precise pentamers with diverse monomer sequences and their thermal properties. Chinese J. Polym. Sci., 2022, 40(5), 447-455. doi:10.1007/s10118-022-2689-1http://dx.doi.org/10.1007/s10118-022-2689-1
Zheng Y.; Zhang S.; Tok J. B. H.; Bao Z. N. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc., 2022, 144(11), 4699-4715. doi:10.1021/jacs.2c00072http://dx.doi.org/10.1021/jacs.2c00072
尹悦, 翟大龙, 陈舒雯, 尚鑫, 李立心, 彭娟. 全共轭聚噻吩类和聚硒吩类嵌段共聚物的凝聚态结构调控. 高分子学报, 2020, 51(5), 434-447. doi:10.11777/j.issn1000-3304.2020.19220http://dx.doi.org/10.11777/j.issn1000-3304.2020.19220
Zhou D. D.; Xu M.; Ma Z.; Gan Z. H.; Tan R.; Wang S.; Zhang Z. B.; Dong X. H. Precisely encoding geometric features into discrete linear polymer chains for robust structural engineering. J. Am. Chem. Soc., 2021, 143(44), 18744-18754. doi:10.1021/jacs.1c09575http://dx.doi.org/10.1021/jacs.1c09575
Lehmann J. W.; Blair D. J.; Burke M. D. Towards the generalized iterative synthesis of small molecules. Nat. Rev. Chem., 2018, 2, 115. doi:10.1038/s41570-018-0115http://dx.doi.org/10.1038/s41570-018-0115
He C. Z.; Dong J.; Xu C. R.; Pan X. C. N-coordinated organoboron in polymer synthesis and material science. ACS Polym. Au, 2023, 3(1), 5-27. doi:10.1021/acspolymersau.2c00046http://dx.doi.org/10.1021/acspolymersau.2c00046
Li J. Q.; Ballmer S. G.; Gillis E. P.; Fujii S.; Schmidt M. J.; Palazzolo A. M. E.; Lehmann J. W.; Morehouse G. F.; Burke M. D. Synthesis of many different types of organic small molecules using one automated process. Science, 2015, 347(6227), 1221-1226. doi:10.1126/science.aaa5414http://dx.doi.org/10.1126/science.aaa5414
Kelly A. M.; Chen P. J.; Klubnick J.; Blair D. J.; Burke M. D. A mild method for making MIDA boronates. Org. Lett., 2020, 22(24), 9408-9414. doi:10.1021/acs.orglett.0c02449http://dx.doi.org/10.1021/acs.orglett.0c02449
Xu C. R.; He C. Z.; Li N.; Yang S. C.; Du Y. X.; Matyjaszewski K.; Pan X. C. Regio- and sequence-controlled conjugated topological oligomers and polymers via boronate-tag assisted solution-phase strategy. Nat. Commun., 2021, 12(1), 5853. doi:10.1038/s41467-021-26186-yhttp://dx.doi.org/10.1038/s41467-021-26186-y
He C. Z.; Pan X. C. MIDA boronate stabilized polymers as a versatile platform for organoboron and functionalized polymers. Macromolecules, 2020, 53(10), 3700-3708. doi:10.1021/acs.macromol.0c00665http://dx.doi.org/10.1021/acs.macromol.0c00665
Li X.; He C. Z.; Matyjaszewski K.; Pan X. C. ATRP of MIDA boronate-containing monomers as a tool for synthesizing linear phenolic and functionalized polymers. ACS Macro Lett., 2021, 10(10), 1327-1332. doi:10.1021/acsmacrolett.1c00592http://dx.doi.org/10.1021/acsmacrolett.1c00592
Cox P. A.; Leach A. G.; Campbell A. D.; Lloyd-Jones G. C. Protodeboronation of heteroaromatic, vinyl, and cyclopropyl boronic acids: pH-rate profiles, autocatalysis, and disproportionation. J. Am. Chem. Soc., 2016, 138(29), 9145-9157. doi:10.1021/jacs.6b03283http://dx.doi.org/10.1021/jacs.6b03283
Wagh R. B.; Nagarkar J. M. Facile and effective approach for oxidation of boronic acids. Tetrahedron Lett., 2017, 58(48), 4572-4575. doi:10.1016/j.tetlet.2017.10.059http://dx.doi.org/10.1016/j.tetlet.2017.10.059
Stepp B. R.; Nguyen S. T. Enhancement of the physical properties of poly((2-terthiophenyl)norbornene) through cross-linking pendant terthiophenes. Macromolecules, 2004, 37(22), 8222-8229. doi:10.1021/ma035740hhttp://dx.doi.org/10.1021/ma035740h
Mori H.; Takano K.; Endo T. RAFT polymerization of vinylthiophene derivatives and synthesis of block copolymers having cross-linkable segments. Macromolecules, 2009, 42(19), 7342-7352. doi:10.1021/ma900833dhttp://dx.doi.org/10.1021/ma900833d
Nakabayashi K.; Oya H.; Mori H. Cross-linked core-shell nanoparticles based on amphiphilic block copolymers by RAFT polymerization and palladium-catalyzed suzuki coupling reaction. Macromolecules, 2012, 45(7), 3197-3204. doi:10.1021/ma300239uhttp://dx.doi.org/10.1021/ma300239u
Islam M. S.; Qiao Y. L.; Tang C. B.; Ploehn H. J. Terthiophene-containing copolymers and homopolymer blends as high-performance dielectric materials. ACS Appl. Mater. Interfaces, 2015, 7(3), 1967-1977. doi:10.1021/am507751mhttp://dx.doi.org/10.1021/am507751m
Qiao Y. L.; Islam M. S.; Han K.; Leonhardt E.; Zhang J. Y.; Wang Q.; Ploehn H. J.; Tang C. B. Polymers containing highly polarizable conjugated side chains as high-performance all-organic nanodielectric materials. Adv. Funct. Mater., 2013, 23(45), 5638-5646. doi:10.1002/adfm.201300736http://dx.doi.org/10.1002/adfm.201300736
Hu Z. K.; Reichmanis E. Synthesis of electroactive polystyrene derivatives para-substituted with π-conjugated oligothiophene via postgrafting functionalization. J. Polym. Sci. A Polym. Chem., 2011, 49(5), 1155-1162. doi:10.1002/pola.24531http://dx.doi.org/10.1002/pola.24531
Tomar A.; Mahendiaa S.; Kumara S. Structural characterization of PMMA blended with chemically synthesized PAni. Adv. Appl. Sci. Res., 2011, 2(3), 327-333.
0
Views
183
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution