浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 纤维材料与器件研究院 先进材料实验室 上海 200438
Pei-ning Chen, E-mail: peiningc@fudan.edu.cn
Published:20 July 2024,
Published Online:03 April 2024,
Received:15 January 2024,
Accepted:19 February 2024
移动端阅览
孙虹纪, 蒋鸿宇, 刘沛雨, 杨哲, 张琨, 陈培宁, 彭慧胜. 芳纶纳米纤维增强的碳纳米管复合纤维. 高分子学报, 2024, 55(7), 891-899
Sun, H. J.; Jiang, H. Y.; Liu, P. Y.; Yang, Z.; Zhang, K.; Chen, P. N.; Peng, H. S. Carbon nanotube composite fiber reinforced by aramid nanofibers. Acta Polymerica Sinica, 2024, 55(7), 891-899
孙虹纪, 蒋鸿宇, 刘沛雨, 杨哲, 张琨, 陈培宁, 彭慧胜. 芳纶纳米纤维增强的碳纳米管复合纤维. 高分子学报, 2024, 55(7), 891-899 DOI: 10.11777/j.issn1000-3304.2024.24015.
Sun, H. J.; Jiang, H. Y.; Liu, P. Y.; Yang, Z.; Zhang, K.; Chen, P. N.; Peng, H. S. Carbon nanotube composite fiber reinforced by aramid nanofibers. Acta Polymerica Sinica, 2024, 55(7), 891-899 DOI: 10.11777/j.issn1000-3304.2024.24015.
利用浮动催化化学气相沉积法可以将性能优异的碳纳米管(CNT)组装成碳纳米管纤维(CNTF),但如何有效增强碳纳米管纤维内部碳纳米管及其管束之间的相互作用力,以大幅提升其力学和电学性能,是该领域的一个重要难题. 本文提出通过溶剂质子化策略,将芳纶纳米纤维引入碳纳米管纤维,制备得到了高性能的碳纳米管复合纤维材料,其拉伸强度达到1.23 GPa,杨氏模量达到26.97 GPa,相较于初始的碳纳米管纤维分别提升了92.1%和133.5%. 该复合纤维的比强度和比模量分别为28.67和628.67 cN/dtex,与芳纶纤维等高性能纤维相当. 此外,该复合纤维兼具良好的柔性与电学性能,可以直接作为纤维电子器件的电极材料,展现出良好的应用潜力.
Carbon nanotubes (CNT) can be assembled into carbon nanotube fibers (CNTF) by floating catalytic chemical vapor deposition
but it remains challenging to effectively enhance the interaction force between carbon nanotubes and their bundles inside carbon nanotube fibers to effectively improve mechanical and electrical properties. In this study
we proposed to introduce aramid nanofibers into carbon nanotube fibers through solvent protonation to obtain high-performance carbon nanotube composite fibers. The composite fibers exhibited tensile strength of 1.23 GPa and the Young's modulus of 26.97 GPa
which were improved by 92.1% and 133.5% compared with the original carbon nanotube fibers
respectively. The specific strength and specific modulus of the composite fibers were 28.67 and 628.67 cN/dtex
which were comparable to those of high-performance fibers such as aramid fiber. In addition
the composite fibers showed good flexibility and electrical conductivity
which can be directly used as the electrode material in fiber electronic devices
showing good application potential.
碳纳米管纤维芳纶纳米纤维氢键高分子复合纤维
Carbon nanotube fiberAramid nanofiberHydrogen bondPolymer composite fiber
Li R.; Jiang Q. Y.; Zhang R. F. Progress and perspective on high-strength and multifunctional carbon nanotube fibers. Sci. Bull., 2022, 67(8), 784-787. doi:10.1016/j.scib.2022.01.008http://dx.doi.org/10.1016/j.scib.2022.01.008
Vigolo B.; Pénicaud A.; Coulon C.; Sauder C.; Pailler R.; Journet C.; Bernier P.; Poulin P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 2000, 290(5495), 1331-1334. doi:10.1126/science.290.5495.1331http://dx.doi.org/10.1126/science.290.5495.1331
Zhang M.; Atkinson K. R.; Baughman R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306(5700), 1358-1361. doi:10.1126/science.1104276http://dx.doi.org/10.1126/science.1104276
Li Y. L.; Kinloch I. A.; Windle A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004, 304(5668), 276-278. doi:10.1126/science.1094982http://dx.doi.org/10.1126/science.1094982
Ma W. J.; Liu L. Q.; Yang R.; Zhang T. H.; Zhang Z.; Song L.; Ren Y.; Shen J.; Niu Z. Q.; Zhou W. Y.; Xie S. S. Monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv. Mater., 2009, 21(5), 603-608. doi:10.1002/adma.200801335http://dx.doi.org/10.1002/adma.200801335
Chazot C. A. C.; Hart A. J. Understanding and control of interactions between carbon nanotubes and polymers for manufacturing of high-performance composite materials. Compos. Sci. Technol., 2019, 183, 107795. doi:10.1016/j.compscitech.2019.107795http://dx.doi.org/10.1016/j.compscitech.2019.107795
Peng B.; Locascio M.; Zapol P.; Li S. Y.; Mielke S. L.; Schatz G. C.; Espinosa H. D. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol., 2008, 3(10), 626-631. doi:10.1038/nnano.2008.211http://dx.doi.org/10.1038/nnano.2008.211
Lee J.; Lee D. M.; Jung Y.; Park J.; Lee H. S.; Kim Y. K.; Park C. R.; Jeong H. S.; Kim S. M. Direct spinning and densification method for high-performance carbon nanotube fibers. Nat. Commun., 2019, 10(1), 2962. doi:10.1038/s41467-019-10998-0http://dx.doi.org/10.1038/s41467-019-10998-0
Xu W.; Chen Y.; Zhan H.; Wang J. N. High-strength carbon nanotube film from improving alignment and densification. Nano Lett., 2016, 16(2), 946-952. doi:10.1021/acs.nanolett.5b03863http://dx.doi.org/10.1021/acs.nanolett.5b03863
Zhan H.; Chen Y. W.; Shi Q. Q.; Zhang Y.; Mo R. W.; Wang J. N. Highly aligned and densified carbon nanotube films with superior thermal conductivity and mechanical strength. Carbon, 2022, 186, 205-214. doi:10.1016/j.carbon.2021.09.069http://dx.doi.org/10.1016/j.carbon.2021.09.069
Ryu S.; Chou J. B.; Lee K.; Lee D. J.; Hong S. H.; Zhao R.; Lee H.; Kim S. G. Direct insulation-to-conduction transformation of adhesive catecholamine for simultaneous increases of electrical conductivity and mechanical strength of CNT fibers. Adv. Mater., 2015, 27(21), 3250-3255. doi:10.1002/adma.201500914http://dx.doi.org/10.1002/adma.201500914
Han Y.; Zhang X. H.; Yu X. P.; Zhao J. N.; Li S.; Liu F.; Gao P.; Zhang Y. Y.; Zhao T.; Li Q. W. Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites. Sci. Rep., 2015, 5, 11533. doi:10.1038/srep11533http://dx.doi.org/10.1038/srep11533
Yang X. Q.; Zhao J. N.; Wu K. J.; Yang M.; Wu J.; Zhang X. C.; Zhang X. H.; Li Q. W. Making a strong adhesion between polyetherketoneketone and carbon nanotube fiber through an electro strategy. Compos. Sci. Technol., 2019, 177, 81-87. doi:10.1016/j.compscitech.2019.04.015http://dx.doi.org/10.1016/j.compscitech.2019.04.015
Ryu K. H.; Kim J. G.; Lee D. J.; Kim S. G.; Ku B. C.; Hwang J. Y.; Jeong K. U.; Kim N. D.; Kim D. Y. Boost up the mechanical and electrical property of CNT fibers by governing lyotropic liquid crystalline mesophases with aramid polymers for robust lightweight wiring applications. Adv. Fiber Mater., 2023, 5(2), 514-526. doi:10.1007/s42765-022-00246-4http://dx.doi.org/10.1007/s42765-022-00246-4
贾欣桦, 曲荣君, 孙昌梅, 安凯, 付饶, 牟英蕾. 低聚对位芳纶化学修饰多壁碳纳米管的制备及性能. 高分子学报, 2018, (7), 878-885. doi:10.11777/j.issn1000-3004.2018.17327http://dx.doi.org/10.11777/j.issn1000-3004.2018.17327
Cao K. Q.; Siepermann C. P.; Yang M.; Waas A. M.; Kotov N. A.; Thouless M. D.; Arruda E. M. Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv. Funct. Mater., 2013, 23(16), 2072-2080. doi:10.1002/adfm.201202466http://dx.doi.org/10.1002/adfm.201202466
Patterson B. A.; Malakooti M. H.; Lin J. J.; Okorom A.; Sodano H. A. Aramid nanofibers for multiscale fiber reinforcement of polymer composites. Compos. Sci. Technol., 2018, 161, 92-99. doi:10.1016/j.compscitech.2018.04.005http://dx.doi.org/10.1016/j.compscitech.2018.04.005
Yang M.; Cao K. Q.; Sui L.; Qi Y.; Zhu J.; Waas A.; Arruda E. M.; Kieffer J.; Thouless M. D.; Kotov N. A. Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano, 2011, 5(9), 6945-6954. doi:10.1021/nn2014003http://dx.doi.org/10.1021/nn2014003
Zhu J. Q.; Cao W. X.; Yue M. L.; Hou Y.; Han J. C.; Yang M. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites. ACS Nano, 2015, 9(3), 2489-2501. doi:10.1021/nn504927ehttp://dx.doi.org/10.1021/nn504927e
Cai J. Z.; Griesbach C.; Thevamaran R. Extreme dynamic performance of nanofiber mats under supersonic impacts mediated by interfacial hydrogen bonds. ACS Nano, 2021, 15(12), 19945-19955. doi:10.1021/acsnano.1c07465http://dx.doi.org/10.1021/acsnano.1c07465
Gommans H. H.; Alldredge J. W.; Tashiro H.; Park J.; Magnuson J.; Rinzler A. G. Fibers of aligned single-walled carbon nanotubes: polarized raman spectroscopy. J. Appl. Phys., 2000, 88(5), 2509-2514. doi:10.1063/1.1287128http://dx.doi.org/10.1063/1.1287128
Hu D. M.; Xing Y. J.; Chen M. H.; Gu B. H.; Sun B. Z.; Li Q. W. Ultrastrong and excellent dynamic mechanical properties of carbon nanotube composites. Compos. Sci. Technol., 2017, 141, 137-144. doi:10.1016/j.compscitech.2017.01.019http://dx.doi.org/10.1016/j.compscitech.2017.01.019
Park O. K.; Young Kim W.; Min Kim S.; You N. H.; Jeong Y.; Lee H. S.; Ku B. C. Effect of oxygen plasma treatment on the mechanical properties of carbon nanotube fibers. Mater. Lett., 2015, 156, 17-20. doi:10.1016/j.matlet.2015.04.141http://dx.doi.org/10.1016/j.matlet.2015.04.141
Almaroof A.; Ali A.; Mannocci F.; Deb S. Semi-interpenetrating network composites reinforced with kevlar fibers for dental post fabrication. Dent. Mater. J., 2019, 38(4), 511-521. doi:10.4012/dmj.2018-040http://dx.doi.org/10.4012/dmj.2018-040
Li M. Z.; Zhao G.; Liu X. Y.; Xie X. M.; Zhang C.; Yu H. T.; Jian X. G.; Song Y. J.; Xu J. Self-healing interface of carbon fiber reinforced composites based on reversible hydrogen-bonded interactions. Compos. Commun., 2023, 40, 101631. doi:10.1016/j.coco.2023.101631http://dx.doi.org/10.1016/j.coco.2023.101631
Shi X.; Zuo Y.; Zhai P.; Shen J. H.; Yang Y.; Gao Z.; Liao M.; Wu J. X.; Wang J. W.; Xu X. J.; Tong Q.; Zhang B.; Wang B. J.; Sun X. M.; Zhang L. H.; Pei Q. B.; Jin D. Y.; Chen P. N.; Peng H. S. Large-area display textiles integrated with functional systems. Nature, 2021, 591(7849), 240-245. doi:10.1038/s41586-021-03295-8http://dx.doi.org/10.1038/s41586-021-03295-8
0
Views
294
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution