浏览全部资源
扫码关注微信
1.江西师范大学氟硅能源材料与化学教育部重点实验室 南昌 330022
2.南昌大学化学化工学院/薄膜能源化学江西省重点实验室 南昌 330031
3.江西师范大学美术学院设计系 南昌 330022
4.东华大学服装与艺术设计学院 上海 201620
Jian-liang Gong, E-mail: jlgong@jxnu.edu.cn
Yi-wang Chen, E-mail: ywchen@ncu.edu.cn
Published:20 June 2024,
Published Online:10 April 2024,
Received:23 January 2024,
Accepted:15 March 2024
移动端阅览
林云飞, 程鑫慧, 夏利琼, 刘瑾, 张茜, 龚剑亮, 陈义旺. 腰带型人体微环境可视化监测系统柔性集成与可穿戴应用研究. 高分子学报, 2024, 55(6), 718-728
Lin, Y. F.; Cheng, X. H.; Xia, L. Q.; Liu, J.; Zhang, Q.; Gong, J. L.; Chen, Y. W. Flexible integration and wearable application of belt-type human microenvironment visualization monitoring system. Acta Polymerica Sinica, 2024, 55(6), 718-728
林云飞, 程鑫慧, 夏利琼, 刘瑾, 张茜, 龚剑亮, 陈义旺. 腰带型人体微环境可视化监测系统柔性集成与可穿戴应用研究. 高分子学报, 2024, 55(6), 718-728 DOI: 10.11777/j.issn1000-3304.2024.24028.
Lin, Y. F.; Cheng, X. H.; Xia, L. Q.; Liu, J.; Zhang, Q.; Gong, J. L.; Chen, Y. W. Flexible integration and wearable application of belt-type human microenvironment visualization monitoring system. Acta Polymerica Sinica, 2024, 55(6), 718-728 DOI: 10.11777/j.issn1000-3304.2024.24028.
微电子系统的创新功能设计及其柔性集成封装是推进智能可穿戴设备在主动健康监测领域应用发展的核心动力. 本研究采用控制处理芯片、温湿度传感器、信号采集与无线传输模块以及光纤等光/电子元器件和功能模块设计与开发了一套温湿度数据可视化监测系统,并基于超低模量有机硅非水凝胶和3D间隔织物为主要材料复合制备了一种兼具本征和结构柔性的可拉伸电路板对其实现了一体柔性集成与封装,发展得到了一款可穿戴人体微环境(数据)可视化监测功能腰带. 所使用的新型有机硅非水凝胶复合织物材料杨氏模量和抗弯刚度分别仅为0.113 MPa和114.680 mN
·
mm,在充分保留原织物基底柔软顺应性的同时,还有效地引入了有机硅类材料固有的优异生物相容性、疏水性和电绝缘性,并实现了断裂拉伸强度和断裂拉伸率等力学性能的进一步增强,分别提高了48.775%和22.507%. 经其集成与封装得到的人体微环境可视化监测功能腰带采用假人进行穿戴模拟测试,通过可拉伸光纤显示板颜色变化成功地实现了人体微环境温湿度变化情况实时探测和监控. 该功能腰带还可通过与手机和电脑等设备进行连接,实现人体微环境数据的移动监测和云存储,在老年人卧床护理等特殊护理领域显示出优异的应用潜力.
The innovative functional design and flexible integration of microelectronic systems are the driving forces behind the advancement of smart wearable devices in the field of proactive health monitoring. This work employs STM32 control processing chips
temperature and humidity sensors
signal collection and wireless transmission modules
as well as optical components like fiber optics
to design and develop a temperature and humidity data visualization monitoring system. Based on ultra-low modulus silicone nonaqueous gel and 3D spacer fabric as the main materials
a stretchable circuit board with intrinsic and structural flexibility was further fabricated to directly integrate and package this system as a waist-wearable belt-type device for visualizing human microenvironment (data) monitoring. The novel silicone nonaqueous gel composite fabric material used has a Young's modulus and bending stiffness of only 0.113 MPa and 114.680 mN
·
mm
respectively. Not only did it well retain the inherent soft compliance of fabric substrate
effectively introducing the excellent biocompatibility
hydrophobicity
and electrical insulation of silicone materials
but also achieved further enhancement in mechanical properties such as tensile strength and elongation at break
increased by 48.775% and 22.507%
respectively. The resulting human microenvironment visualization monitoring belt underwent wearable simulation testing on a mannequin
successfully achieving real-time detection and monitoring of temperature and humidity variations in the human microenvironment through color changes in the stretchable fiber optic display board. Moreover
this functional belt
allowing mobile monitoring and data storage thorough smart phones and computers
showcases significant potential in specialized care areas
such as daily care for bedridden elderly.
柔性电子可拉伸电路板人体微环境生理数据可视化健康监测与护理
Flexible electronicsStretchable circuit boardHuman body microenvironmentPhysiological data visualizationHealth monitoring and care
Rao L.; Meng X. C.; Xiao S. Q.; Xing Z.; Fu Q. X.; Wang H. Y.; Gong C. X.; Hu T.; Hu X. T.; Guo R.; Chen Y. W. Wearable tin-based perovskite solar cells achieved by a crystallographic size effect. Angew. Chem. Int. Ed., 2021, 60(26), 14693-14700. doi:10.1002/anie.202104201http://dx.doi.org/10.1002/anie.202104201
Huang Z. Q.; Li L.; Wu T. Q.; Xue T. Y.; Sun W.; Pan Q.; Wang H. D.; Xie H. F.; Chi J. M.; Han T.; Hu X. T.; Su M.; Chen Y. W.; Song Y. L. Wearable perovskite solar cells by aligned liquid crystal elastomers. Nat. Commun., 2023, 14(1), 1204. doi:10.1038/s41467-023-36938-7http://dx.doi.org/10.1038/s41467-023-36938-7
Fan B. J.; Xiong J.; Zhang Y. Y.; Gong C. X.; Li F.; Meng X. C.; Hu X. T.; Yuan Z. Y.; Wang F. Y.; Chen Y. W. A bionic interface to suppress the coffee-ring effect for reliable and flexible perovskite modules with a near-90% yield rate. Adv. Mater., 2022, 34(29), e2201840. doi:10.1002/adma.202201840http://dx.doi.org/10.1002/adma.202201840
Yang J.; Sheng W. P.; Li X.; Zhong Y.; Su Y.; Tan L. C.; Chen Y. W. Synergistic toughening and self-healing strategy for highly efficient and stable flexible perovskite solar cells. Adv. Funct. Mater., 2023, 33(23), 2214984. doi:10.1002/adfm.202214984http://dx.doi.org/10.1002/adfm.202214984
Xing Z.; Lin S. Y.; Meng X. C.; Hu T.; Li D. X.; Fan B. J.; Cui Y. J.; Li F. Y.; Hu X. T.; Chen Y. W. A highly tolerant printing for scalable and flexible perovskite solar cells. Adv. Funct. Mater., 2021, 31(50), 2107726. doi:10.1002/adfm.202107726http://dx.doi.org/10.1002/adfm.202107726
Yang B.; Xiong Y.; Ma K.; Liu S. R.; Tao X. M. Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion. EcoMat, 2020, 2(4), e12054. doi:10.1002/eom2.12054http://dx.doi.org/10.1002/eom2.12054
Liu S.; Ma K.; Yang B.; Li H.; Tao X. M. Textile electronics for VR/AR applications. Adv. Funct. Mater., 2021, 31(39), 2007254. doi:10.1002/adfm.202007254http://dx.doi.org/10.1002/adfm.202007254
Shi J. D.; Liu S.; Zhang L. S.; Yang B.; Shu L.; Yang Y.; Ren M.; Wang Y.; Chen J. W.; Chen W.; Chai Y.; Tao X. M. Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater., 2020, 32(5), e1901958. doi:10.1002/adma.201901958http://dx.doi.org/10.1002/adma.201901958
Tao X. M. Study of fiber-based wearable energy systems. Acc. Chem. Res., 2019, 52(2), 307-315. doi:10.1021/acs.accounts.8b00502http://dx.doi.org/10.1021/acs.accounts.8b00502
Matsuhisa N.; Niu S. M.; O'Neill S. J. K.; Kang J.; Ochiai Y.; Katsumata T.; Wu H. C.; Ashizawa M.; Wang G. N.; Zhong D. L.; Wang X. L.; Gong X. W.; Ning R.; Gong H. X.; You I.; Zheng Y.; Zhang Z. T.; Tok J. B. H.; Chen X. D.; Bao Z. N. High-frequency and intrinsically stretchable polymer diodes. Nature, 2021, 600(7888), 246-252. doi:10.1038/s41586-021-04053-6http://dx.doi.org/10.1038/s41586-021-04053-6
Wang W. C.; Wang S. H.; Rastak R.; Ochiai Y.; Niu S. M.; Jiang Y. W.; Arunachala P. K.; Zheng Y.; Xu J.; Matsuhisa N.; Yan X. Z.; Kwon S. K.; Miyakawa M.; Zhang Z. T.; Ning R.; Foudeh A. M.; Yun Y.; Linder C.; Tok J. B. H.; Bao Z. N. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron., 2021, 4, 143-150. doi:10.1038/s41928-020-00525-1http://dx.doi.org/10.1038/s41928-020-00525-1
Rogers J. A.; Someya T.; Huang Y. G. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973), 1603-1607. doi:10.1126/science.1182383http://dx.doi.org/10.1126/science.1182383
Fan J. A.; Yeo W. H.; Su Y. W.; Hattori Y.; Lee W.; Jung S. Y.; Zhang Y. H.; Liu Z. J.; Cheng H. Y.; Falgout L.; Bajema M.; Coleman T.; Gregoire D.; Larsen R. J.; Huang Y. G.; Rogers J. A. Fractal design concepts for stretchable electronics. Nat. Commun., 2014, 5, 3266. doi:10.1038/ncomms4266http://dx.doi.org/10.1038/ncomms4266
Rein M.; Favrod V. D.; Hou C.; Khudiyev T.; Stolyarov A.; Cox J.; Chung C. C.; Chhav C.; Ellis M.; Joannopoulos J.; Fink Y. Diode fibres for fabric-based optical communications. Nature, 2018, 560(7717), 214-218. doi:10.1038/s41586-018-0390-xhttp://dx.doi.org/10.1038/s41586-018-0390-x
Zuo Y.; Shi X.; Zhou X. F.; Xu X. J.; Wang J.; Chen P. N.; Sun X. M.; Peng H. S. Flexible color-tunable electroluminescent devices by designing dielectric-distinguishing double-stacked emissive layers. Adv. Funct. Mater., 2020, 30(50), 2005200. doi:10.1002/adfm.202005200http://dx.doi.org/10.1002/adfm.202005200
Chen C. R.; Sun X. M.; Peng H. S. The rise of soft neural electronics. Giant, 2021, 8, 100075. doi:10.1016/j.giant.2021.100075http://dx.doi.org/10.1016/j.giant.2021.100075
Sun H.; Zhang Y.; Zhang J.; Sun X. M.; Peng H. S. Energy harvesting and storage in 1D devices. Nat. Rev. Mater., 2017, 2(6), 17023. doi:10.1038/natrevmats.2017.23http://dx.doi.org/10.1038/natrevmats.2017.23
Li Q.; Tao X. M. Three-dimensionally deformable, highly stretchable, permeable, durable and washable fabric circuit boards. Proc. Math. Phys. Eng. Sci., 2014, 470(2171), 20140472. doi:10.1098/rspa.2014.0472http://dx.doi.org/10.1098/rspa.2014.0472
He E. F.; Sun Y.; Wang X. W.; Chen H. J.; Sun B. Z.; Gu B. H.; Zhang W. 3D angle-interlock woven structural wearable triboelectric nanogenerator fabricated with silicone rubber coated graphene oxide/cotton composite yarn. Compos. Part B Eng., 2020, 200, 108244. doi:10.1016/j.compositesb.2020.108244http://dx.doi.org/10.1016/j.compositesb.2020.108244
Nan Y. B.; Wang X. T.; Zhou H.; Sun Y. N.; Yu T.; Yang L. H.; Huang Y. L. Highly porous and rough polydimethylsiloxane film-based triboelectric nanogenerators and its application for electrochemical cathodic protection. iScience, 2023, 26(11), 108261. doi:10.1016/j.isci.2023.108261http://dx.doi.org/10.1016/j.isci.2023.108261
Qian Y. T.; Lyu Z. Y.; Kim D. H.; Kang D. J. Enhancing the output power density of polydimethylsiloxane-based flexible triboelectric nanogenerators with ultrathin nickel telluride nanobelts as a co-triboelectric layer. Nano Energy, 2021, 90, 106536. doi:10.1016/j.nanoen.2021.106536http://dx.doi.org/10.1016/j.nanoen.2021.106536
Li Y. T.; Liu W. J.; Shen F. X.; Zhang G. D.; Gong L. X.; Zhao L.; Song P. G.; Gao J. F.; Tang L. C. Processing, thermal conductivity and flame retardant properties of silicone rubber filled with different geometries of thermally conductive fillers: a comparative study. Compos. Part B Eng., 2022, 238, 109907. doi:10.1016/j.compositesb.2022.109907http://dx.doi.org/10.1016/j.compositesb.2022.109907
Ji Y.; Han S. D.; Zhang Q.; Wu H.; Guo S. Y.; Zhang F. S.; Qiu J. H. Constructing a highly vertically aligned network of h-BN/CF in silicone rubber composites: Achieving superior through-plane thermal conductivity and electrical insulation. Compos. Part B Eng., 2023, 266, 111024. doi:10.1016/j.compositesb.2023.111024http://dx.doi.org/10.1016/j.compositesb.2023.111024
Xia L. Q.; Zeng J. Q.; Xiao Y. L.; Gong J. L.; Chen Y. W. Surface-grafting modification of attapulgite nanorods with polysiloxane coupling agents for highly-efficient mechanical and triboelectric performance enhancement of silicone rubbers. Compos. Part B Eng., 2024, 271, 111170. doi:10.1016/j.compositesb.2023.111170http://dx.doi.org/10.1016/j.compositesb.2023.111170
Gong J. L.; Xu B. G.; Tao X. M. Breath figure micromolding approach for regulating the microstructures of polymeric films for triboelectric nanogenerators. ACS Appl. Mater. Interfaces, 2017, 9(5), 4988-4997. doi:10.1021/acsami.6b14729http://dx.doi.org/10.1021/acsami.6b14729
Fu H. Y.; Gong J. L.; Zhong H.; Yang B.; Long Z. C.; Zeng J. Q.; Cheng Z. Y.; He J. L.; Xu B. G.; Chen Y. W. Surface microstructural engineering of silicone elastomers for high performance adhesive surface-enabled mechanical energy harvesters. J. Mater. Chem. A, 2022, 10(17), 9643-9654. doi:10.1039/d2ta00343khttp://dx.doi.org/10.1039/d2ta00343k
Gong J. L.; Ye S. Y.; Luo Y.; Xia L. Q.; Liu B. Y.; Chen Y. W. Contact electrification spectrum for performance enhancement mechanism investigation of triboelectric nanogenerators based on silicone elastomers with different surface microstructures. Chinese J. Polym. Sci., 2023, 41(10), 1591-1598. doi:10.1007/s10118-023-3008-1http://dx.doi.org/10.1007/s10118-023-3008-1
Guan X. Y.; Gong J. L.; Xu B. G. Three-dimensional conformal porous microstructural engineering of textile substrates with customized functions of brick materials and inherent advantages of textiles. ACS Appl. Mater. Interfaces, 2020, 12(15), 17967-17978. doi:10.1021/acsami.0c01557http://dx.doi.org/10.1021/acsami.0c01557
Chen Y. J.; Xu B. G.; Gong J. L.; Wen J. F.; Hua T.; Kan C. W.; Deng J. W. Design of high-performance wearable energy and sensor electronics from fiber materials. ACS Appl. Mater. Interfaces, 2019, 11(2), 2120-2129. doi:10.1021/acsami.8b16167http://dx.doi.org/10.1021/acsami.8b16167
Gong J. L.; Xu B. G. 3D conformal surface engineering of continuous fibers with porous microstructures for 1D advanced functional materials. Macromol. Mater. Eng., 2021, 306(4), 2000699. doi:10.1002/mame.202000699http://dx.doi.org/10.1002/mame.202000699
Gong J. L.; Xu B. G.; Yang Y. J.; Wu M. J.; Yang B. An adhesive surface enables high-performance mechanical energy harvesting with unique frequency-insensitive and pressure-enhanced output characteristics. Adv. Mater., 2020, 32(14), e1907948. doi:10.1002/adma.201907948http://dx.doi.org/10.1002/adma.201907948
Gong J. L.; Xu B. G.; Guan X. Y.; Chen Y. J.; Li S. Y.; Feng J. Towards truly wearable energy harvesters with full structural integrity of fiber materials. Nano Energy, 2019, 58, 365-374. doi:10.1016/j.nanoen.2019.01.056http://dx.doi.org/10.1016/j.nanoen.2019.01.056
0
Views
222
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution