浏览全部资源
扫码关注微信
五邑大学 江门市高分子材料智能制造重点实验室 江门 529100
Shu-ping Xiao, E-mail: xsp@wyu.edu.cn
Published:20 October 2024,
Published Online:27 August 2024,
Received:29 February 2024,
Accepted:06 June 2024
移动端阅览
曾鹏程, 肖书平, 吴焕东, 徐百平. 较强形变能力的聚丙烯基多孔材料的制备及其压力传感性能研究. 高分子学报, 2024, 55(10), 1381-1392
Zeng, P. C.; Xiao, S. P.; Wu, H. D.; Xu, B. P. Preparation of polypropylene-based cellular materials with stronger deformation ability and research on their pressure sensing performances. Acta Polymerica Sinica, 2024, 55(10), 1381-1392
曾鹏程, 肖书平, 吴焕东, 徐百平. 较强形变能力的聚丙烯基多孔材料的制备及其压力传感性能研究. 高分子学报, 2024, 55(10), 1381-1392 DOI: 10.11777/j.issn1000-3304.2024.24060.
Zeng, P. C.; Xiao, S. P.; Wu, H. D.; Xu, B. P. Preparation of polypropylene-based cellular materials with stronger deformation ability and research on their pressure sensing performances. Acta Polymerica Sinica, 2024, 55(10), 1381-1392 DOI: 10.11777/j.issn1000-3304.2024.24060.
通过熔融混炼制备热塑性聚氨酯(TPU)/聚丙烯(PP)共混物,采用超临界二氧化碳釜压发泡技术将其制备成发泡样品,并对所得共混物和发泡样品的微观结构和力学性能进行了表征,基于此分析了TPU对共混物形变能力、发泡性能及其压力传感性能的影响机理. 结果表明:TPU可显著增强共混物的形变能力,以该共混物为介电层的电容式压力传感器灵敏度(
S
)较高. 研究还发现,TPU提高了该共混物的熔体强度,从而改善发泡样品的泡孔结构,未发泡实体区域和蠕虫状连通泡孔结构相比于纯PP发泡样品明显减少甚至消失. 也因此,共混物发泡后形变能力得到增强,
S
值进一步提高,如TPU含量为30 wt%的共混物发泡后,相应传感器在弹性弯曲区和屈曲区的
S
值分别提高4.1倍和0.4倍. 应用测试结果表明,以该共混物发泡样品为介电层的电容式压力传感器在行走、坐立和抓取等人体运动检测中具有良好的应用前景.
Polypropylene (PP) has the advantages of low cost
thermoplastic processing and good biocompatibility
and is widely used in the fields of household appliances and medical devices. However
it has rarely been used in the preparation of capacitive pressure sensors. In this research
thermoplastic polyurethane (TPU)/PP blends were prepared by melt blending
and then the blends were foamed by supercritical carbon dioxide batching foaming. The microstructure and mechanical properties of the TPU/PP blends and their foams were characterized. Based on this
th
e effects of the TPU on the mechanical and foaming properties of the blends
and thus on their pressure sensing performances were analyzed. The SEM images of the blends showed that the TPU droplets were uniformly distributed in the PP matrix. And the mechanical results suggests that the deformation abilities of the blends were significantly improved by these TPU droplets. Thus
the pressure sensors with the blends as dielectric layers show higher sensitivity (
S
). It is also found that
the melt strengths of the blends were improved by the TPU. And thus the cellular structures of the TPU/PP foams were improved: the solid area and wormlike-connected cellular structure in the TPU/PP foams were significantly reduced or even disappeared. Therefore
the deformation abilities of the TPU/PP blends were improved by foaming. And the values of
S
for the sensors with TPU/PP foams were higher than those with the TPU/PP blends. For example
for the blend with 30 wt% TPU
the values of
S
in elastic bending and buckling regions were increased by 4.1 and 0.4 times
respectively
after foaming. The application testing results show that the sensor with the PP-based cellular materials as dielectric layers reveals good application prospect in detecting human movements
such as walking
sitting and grasping.
聚丙烯超临界二氧化碳发泡力学性能压力传感性能
PolypropyleneSupercritical carbon dioxide foamingMechanical propertiesPressure sensing performance
Li R. Q.; Zhou Q.; Bi Y.; Cao S. J.; Xia X.; Yang A. L.; Li S. M.; Xiao X. L. Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches. Sens. Actuat. A Phys., 2021, 321, 112425. doi:10.1016/j.sna.2020.112425http://dx.doi.org/10.1016/j.sna.2020.112425
Guo W. T.; Tang X. G.; Tang Z. H.; Sun Q. J. Recent advances in polymer composites for flexible pressure sensors. Polymers, 2023, 15(9), 2176. doi:10.3390/polym15092176http://dx.doi.org/10.3390/polym15092176
Lai Q. T.; Sun Q. J.; Tang Z. H.; Tang X. G.; Zhao X. H. Conjugated polymer-based nanocomposites for pressure sensors. Molecules, 2023, 28(4), 1627. doi:10.3390/molecules28041627http://dx.doi.org/10.3390/molecules28041627
Hwang J.; Kim Y.; Yang H.; Oh J. H. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor. Compos. Part B Eng., 2021, 211, 108607. doi:10.1016/j.compositesb.2021.108607http://dx.doi.org/10.1016/j.compositesb.2021.108607
Bijender, Kumar A. Effect of porosity and microstructure on the functionality of capacitive pressure sensors. Mater. Chem. Phys., 2023, 304, 127872. doi:10.1016/j.matchemphys.2023.127872http://dx.doi.org/10.1016/j.matchemphys.2023.127872
Bijender, Kumar S.; Soni A.; Kumar A. Evaluation of blood pressure using a flexible and wearable capacitive pressure sensor. RSC Adv., 2023, 13(50), 35397-35407. doi:10.1039/d3ra06447fhttp://dx.doi.org/10.1039/d3ra06447f
Cao S. J.; Li R. Q.; Panahi-Sarmad M.; Chen T. J.; Xiao X. L. A flexible and highly sensitive capacitive pressure sensor with microstructured dielectric TPU layer based on mesh fabric as template. IEEE Sens. J., 2022, 22(21), 20276-20284. doi:10.1109/jsen.2022.3207005http://dx.doi.org/10.1109/jsen.2022.3207005
Yang L. P.; Liu X.; Xiao Y.; Zhang Y. Y.; Zhang G. P.; Wang Y. P. 3D printing of carbon nanotube (CNT)/thermoplastic polyurethane (TPU) functional composites and preparation of highly sensitive, wide-range detectable, and flexible capacitive sensor dielectric layers via fused deposition modeling (FDM). Adv. Mater. Technol., 2023, 8(7), 2201638. doi:10.1002/admt.202201638http://dx.doi.org/10.1002/admt.202201638
Nie L. F.; Zhang L.; Di X. P.; Liu Q. Y.; Zhang Z. A.; Zhou Q.; Dong Z. B.; Song Z. D.; Zhang S. H.; Pan G. B. Assembly of highly-sensitive capacitive flexible pressure sensor based on BTO NWs-TPU porous composites film. Vacuum, 2022, 205, 111423. doi:10.1016/j.vacuum.2022.111423http://dx.doi.org/10.1016/j.vacuum.2022.111423
Xu Z. P.; Zhao S.; Lv X. R.; Ge X. Y.; Guo Y. X.; Han R. Y.; Gong C. B.; Bian F.; Tian J. F.; Gao J. Highly sensitive and low detection limit flexible pressure sensor based on modified TiO2 cocooned elastic sponge for wearable applications. IEEE Sens. J., 2022, 22(23), 22479-22486. doi:10.1109/jsen.2022.3217086http://dx.doi.org/10.1109/jsen.2022.3217086
Ma Z. Y.; Zhang K. Y.; Yang S. D.; Zhang Y.; Chen X. C.; Fu Q.; Deng H. High-performance capacitive pressure sensors fabricated by introducing dielectric filler and conductive filler into a porous dielectric layer through a biomimic strategy. Compos. Sci. Technol., 2022, 227, 109595. doi:10.1016/j.compscitech.2022.109595http://dx.doi.org/10.1016/j.compscitech.2022.109595
Chhetry A.; Sharma S.; Yoon H.; Ko S.; Park J. Y. Enhanced sensitivity of capacitive pressure and strain sensor based on CaCu3Ti4O12 wrapped hybrid sponge for wearable applications. Adv. Funct. Mater., 2020, 30(31), 1910020.
Wang S. X.; Muiruri J. K.; Soo X. Y. D.; Liu S. L.; Thitsartarn W.; Tan B. H.; Suwardi A.; Li Z. B.; Zhu Q.; Loh X. J. Bio-polypropylene and polypropylene-based biocomposites: solutions for a sustainable future. Chem. Asian J., 2023, 18(2), e202200972. doi:10.1002/asia.202200972http://dx.doi.org/10.1002/asia.202200972
Lee J. I.; Yang S. B.; Jung H. T. Carbon nanotubes-polypropylene nanocomposites for electrostatic discharge applications. Macromolecules, 2009, 42(21), 8328-8334. doi:10.1021/ma901612whttp://dx.doi.org/10.1021/ma901612w
Khalaj M. J.; Ahmadi H.; Lesankhosh R.; Khalaj G. Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: nano-clay modified with iron nanoparticles. Trends Food Sci. Technol., 2016, 51, 41-48. doi:10.1016/j.tifs.2016.03.007http://dx.doi.org/10.1016/j.tifs.2016.03.007
Khan T.; Irfan M. S.; Ali M.; Dong Y.; Ramakrishna S.; Umer R. Insights to low electrical percolation thresholds of carbon-based polypropylene nanocomposites. Carbon, 2021, 176, 602-631. doi:10.1016/j.carbon.2021.01.158http://dx.doi.org/10.1016/j.carbon.2021.01.158
Bijender, Kumar A. Flexible and wearable capacitive pressure sensor for blood pressure monitoring. Sens. Bio Sens. Res., 2021, 33, 100434. doi:10.1016/j.sbsr.2021.100434http://dx.doi.org/10.1016/j.sbsr.2021.100434
Yang J. C.; Kim J. O.; Oh J.; Kwon S. Y.; Sim J. Y.; Kim D. W.; Choi H. B.; Park S. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS Appl. Mater. Interfaces, 2019, 11(21), 19472-19480. doi:10.1021/acsami.9b03261http://dx.doi.org/10.1021/acsami.9b03261
Atalay O.; Atalay A.; Gafford J.; Walsh C. A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer. Adv. Mater. Technol., 2018, 3(1), 1700237. doi:10.1002/admt.201700237http://dx.doi.org/10.1002/admt.201700237
Kang S. B.; Lee J.; Lee S.; Kim S.; Kim J. K.; Algadi H.; Al-Sayari S.; Kim D. E.; Kim D.; Lee T. Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing. Adv. Electron. Mater., 2016, 2(12), 1600356. doi:10.1002/aelm.201670065http://dx.doi.org/10.1002/aelm.201670065
Chen S. J.; Zhuo B. G.; Guo X. J. Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range. ACS Appl. Mater. Interfaces, 2016, 8(31), 20364-20370. doi:10.1021/acsami.6b05177http://dx.doi.org/10.1021/acsami.6b05177
Lin X. Z.; Xue H.; Li F.; Mei H. X.; Zhao H. R.; Zhang T. All-nanofibrous ionic capacitive pressure sensor for wearable applications. ACS Appl. Mater. Interfaces, 2022, 14(27), 31385-31395. doi:10.1021/acsami.2c01806http://dx.doi.org/10.1021/acsami.2c01806
Yang Q. Y.; Li C.; Zhou W. X.; Li Y.; Zhu Y.; Ma Y. W. High-dielectric porous CaCu3Ti4O12/reduced graphene oxide/polydimethylsiloxane foam for wearable, breathable and low crosstalk capacitive pressure sensor. FlatChem, 2023, 40, 100522. doi:10.1016/j.flatc.2023.100522http://dx.doi.org/10.1016/j.flatc.2023.100522
田信龙, 黄汉雄. 具有较高回弹性的乙烯-辛烯共聚物基微孔复合材料的传感性能. 高分子学报, 2023, 54(2), 235-244.
Huang H. X.; Xu H. F. Preparation of microcellular polypropylene/polystyrene blend foams with tunable cell structure. Polym. Adv. Technol., 2011, 22(6), 822-829. doi:10.1002/pat.1584http://dx.doi.org/10.1002/pat.1584
吴焕东, 肖书平, 徐百平, 黄嘉荣, 徐文华. 熔融混炼制备柔性TPU/rGO介电层及其压力传感性能. 工程塑料应用, 2023, 51(5), 8-13. doi:10.3969/j.issn.1001-3539.2023.05.002http://dx.doi.org/10.3969/j.issn.1001-3539.2023.05.002
Li W.; Jin X.; Zheng Y. D.; Chang X. D.; Wang W. Y.; Lin T.; Zheng F.; Onyilagha O.; Zhu Z. T. A porous and air gap elastomeric dielectric layer for wearable capacitive pressure sensor with high sensitivity and a wide detection range. J. Mater. Chem. C, 2020, 8(33), 11468-11476. doi:10.1039/d0tc00443jhttp://dx.doi.org/10.1039/d0tc00443j
Xiao S. P.; Huang H. X. Generation of nanocellular TPU/reduced graphene oxide nanocomposite foams with high cell density by manipulating viscoelasticity. Polymer, 2019, 183, 121879. doi:10.1016/j.polymer.2019.121879http://dx.doi.org/10.1016/j.polymer.2019.121879
Lee E. S.; Goh T. S.; Lee J. S.; Heo J. Y.; Kim G. B.; Lee C. S. Experimental investigation of macroscopic material nonlinear behavior and microscopic void volume fraction change for porous materials under uniaxial compression. Compos. Part B Eng., 2019, 163, 130-138. doi:10.1016/j.compositesb.2018.11.019http://dx.doi.org/10.1016/j.compositesb.2018.11.019
Lee J. H.; Kim S. K.; Park S.; Park K. H.; Lee J. M. Unified constitutive model with consideration for effects of porosity and its application to polyurethane foam. Compos. Part B Eng., 2018, 138, 87-100. doi:10.1016/j.compositesb.2017.11.030http://dx.doi.org/10.1016/j.compositesb.2017.11.030
Tu Z. H.; Shim V. P. W.; Lim C. T. Plastic deformation modes in rigid polyurethane foam under static loading. Int. J. Solids Struct., 2001, 38(50-51), 9267-9279. doi:10.1016/s0020-7683(01)00213-xhttp://dx.doi.org/10.1016/s0020-7683(01)00213-x
Huang L. S.; Huang X.; Zhang P.; Li Y. X.; Wang S.; Bu X. F.; Chen Z. F. Flexible capacitive pressure sensor with synergistic effect between double-sided pyramid sponge structure dielectric layer and fiber structure electrode layer. Sens. Actuat. A Phys., 2024, 369, 115153. doi:10.1016/j.sna.2024.115153http://dx.doi.org/10.1016/j.sna.2024.115153
0
Views
201
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution