浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
3.云南大学化学科学与工程学院 昆明 650091
Hong-kun Tian, E-mail:hktian@ciac.ac.cn
Jun-qiao Ding, E-mail: dingjunqiao@ynu.edu.cn
Published:20 October 2024,
Published Online:27 May 2024,
Received:29 February 2024,
Accepted:01 April 2024
移动端阅览
刘燊, 李雪, 赵磊, 王淑萌, 田洪坤, 丁军桥, 王利祥. 基于热活化延迟荧光小分子直接聚合的单一白光高分子的合成与表征. 高分子学报, 2024, 55(10), 1300-1312
Liu, S.; Li, X.; Zhao, L.; Wang, S. M.; Tian, H. K.; Ding, J. Q.; Wang, L. X. Synthesis and characterization of single white-emitting polymers based on polymerized thermally activated delayed fluorescence small molecules. Acta Polymerica Sinica, 2024, 55(10), 1300-1312
刘燊, 李雪, 赵磊, 王淑萌, 田洪坤, 丁军桥, 王利祥. 基于热活化延迟荧光小分子直接聚合的单一白光高分子的合成与表征. 高分子学报, 2024, 55(10), 1300-1312 DOI: 10.11777/j.issn1000-3304.2024.24061.
Liu, S.; Li, X.; Zhao, L.; Wang, S. M.; Tian, H. K.; Ding, J. Q.; Wang, L. X. Synthesis and characterization of single white-emitting polymers based on polymerized thermally activated delayed fluorescence small molecules. Acta Polymerica Sinica, 2024, 55(10), 1300-1312 DOI: 10.11777/j.issn1000-3304.2024.24061.
基于热活化延迟荧光(TADF)小分子直接聚合的分子设计原则,采用吖啶-二苯甲酮-咔唑(AcBPCz)、吖啶-萘二甲酰亚胺-咔唑(AcNICz)和四甲基苯分别作为天蓝光TADF单元、橙光TADF单元和连接单元,设计合成了系列单一白光高分子P010~P075. 通过调控不同发色团之间的能量转移,所有单一白光高分子均表现出来自AcBPCz的天蓝光发射和来自AcNICz的橙光发射. 相应OLED器件获得了有效的白光发射,最大电流效率和外量子效率分别为5.4~16.8 cd·A
-1
和3.0%~6.4%. 同时,光色可以从P010的冷白光转变到P075的暖白光,色坐标CIE从(0.32
0.50)移动到(0.47
0.44),色温CCT从5910 K降低到2797 K.
Based on polymerized thermally activated delayed fluorescence (TADF) small molecules
a series of single white-emitting polymers named P010-P075 have been designed and synthesized by using acridine- benzophenone-carbazole (AcBPCz) as the sky-blue TADF moiety
acridine-naphthalimide-carbazole (AcNICz) as the orange TADF moiety and tetramethylbenzene as the linker between the
m. After a modulation of the AcNICz content in the range of 1%-7.5%
a part energy transfer can happen from AcBPCz to AcNICz. Consequently
P010-P075 all display a dual spectral profile in the photoluminescence (PL): the sky-blue emission peaked at 482-492 nm is from AcBPCz
while the orange emission peaked at 590-602 nm is from AcNICz. And the ratio of sky-blue to orange emission together is found to be decreased gradually with the increasing content of AcNICz. The corresponding solution-processed OLEDs achieve a bright white electroluminescence (EL)
revealing a maximum current efficiency of 5.4-16.8 cd·A
-1
and a maximum external quantum efficiency of 3.0%-6.4%. Noticeably
the EL is obviously dependent on the AcNICz content
consistent with the PL counterparts. Ongoing from P010 to P075
the Commission Internationale d'Eclairage (CIE) coordinates are shifted from (0.32
0.50) to (0.47
0.44) and the correlated color temperature (CCT) is reduced from 5910 K to 2797 K. The obtained cold white EL for P010 and warm white EL for P075 are believed to be applicable for different lighting scenes.
有机发光二极管热活化延迟荧光(TADF)高分子单一白光高分子TADF小分子直接聚合光色
Organic light-emitting diodeThermally activated delayed fluorescence polymers (TADF)Single white-emitting polymersPolymerized TADF small moleculesEmissive color
Tang C. W.; VanSlyke S. A. Organic electroluminescent diodes. Appl. Phys. Lett., 1987, 51(12), 913-915. doi:10.1063/1.98799http://dx.doi.org/10.1063/1.98799
Baldo M. A.; O'Brien D. F.; You Y.; Shoustikov A.; Sibley S.; Thompson M. E.; Forrest S. R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395, 151-154. doi:10.1038/25954http://dx.doi.org/10.1038/25954
Ma Y. G.; Zhang H. Y.; Shen J. C.; Che C. M. Electroluminescence from triplet metal—ligand charge-transfer excited state of transition metal complexes. Synth. Met., 1998, 94(3), 245-248. doi:10.1016/s0379-6779(97)04166-0http://dx.doi.org/10.1016/s0379-6779(97)04166-0
Uoyama H.; Goushi K.; Shizu K.; Nomura H.; Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492(7428), 234-238. doi:10.1038/nature11687http://dx.doi.org/10.1038/nature11687
邵世洋, 丁军桥, 王利祥. 高分子发光材料研究进展. 高分子学报, 2018, (2), 198-216. doi:10.11777/j.issn1000-3304.2018.17289http://dx.doi.org/10.11777/j.issn1000-3304.2018.17289
Hong G.; Gan X. M.; Leonhardt C.; Zhang Z.; Seibert J.; Busch J. M.; Bräse S. A brief history of OLEDs-emitter development and industry milestones. Adv. Mater., 2021, 33(9), e2005630. doi:10.1002/adma.202005630http://dx.doi.org/10.1002/adma.202005630
Adachi C. Third-generation organic electroluminescence materials. Jpn. J. Appl. Phys., 2014, 53(6), 060101. doi:10.7567/jjap.53.060101http://dx.doi.org/10.7567/jjap.53.060101
Jiang T. C.; Liu Y. C.; Ren Z. J.; Yan S. K. The design, synthesis and performance of thermally activated delayed fluorescence macromolecules. Polym. Chem., 2020, 11(9), 1555-1571. doi:10.1039/d0py00096ehttp://dx.doi.org/10.1039/d0py00096e
Liu Y. C.; Li C. S.; Ren Z. J.; Yan S. K.; Bryce M. R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater., 2018, 3(4), 18020. doi:10.1038/natrevmats.2018.20http://dx.doi.org/10.1038/natrevmats.2018.20
Yang Z. Y.; Mao Z.; Xie Z. L.; Zhang Y.; Liu S. W.; Zhao J.; Xu J. R.; Chi Z. G.; Aldred M. P. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev., 2017, 46(3), 915-1016. doi:10.1039/c6cs00368khttp://dx.doi.org/10.1039/c6cs00368k
Yan L. B.; Su N.; Yang Y.; Li X.; Sun J.; Wang S. M.; Zhao L.; Ding L. M.; Ding J. Q. TADF polymer enables over 20% EQE in solution-processed green fluorescent OLEDs. SmartMat, 2024, doi: 10.1002/smm2.1272.http://dx.doi.org/10.1002/smm2.1272.
Su N.; Chen B. T.; Ding J. Q. Two birds with one stone: polymerized thermally activated delayed fluorescence small molecules. Chem. A Eur. J., 2024, doi: 10.1002/chem.202304095.http://dx.doi.org/10.1002/chem.202304095.
Kim H. J.; Lee C.; Godumala M.; Choi S.; Park S. Y.; Cho M. J.; Park S.; Choi D. H. Solution-processed thermally activated delayed fluorescence organic light-emitting diodes using a new polymeric emitter containing non-conjugated cyclohexane units. Polym. Chem., 2018, 9(11), 1318-1326. doi:10.1039/c7py02113ehttp://dx.doi.org/10.1039/c7py02113e
Liu X. R.; Rao J. C.; Li X. F.; Wang S. M.; Ding J. Q.; Wang L. X. Teaching an old poly(arylene ether) new tricks: efficient blue thermally activated delayed fluorescence. iScience, 2019, 15, 147-155. doi:10.1016/j.isci.2019.04.020http://dx.doi.org/10.1016/j.isci.2019.04.020
Philipps K.; Ie Y.; van der Zee B.; Png R. Q.; Ho P. K. H.; Chua L. L.; del Pino Rosendo E.; Ramanan C.; Wetzelaer G. J A. H.; Blom, P. W. M.; Michels, J. J. Role of linker functionality in polymers exhibiting main-chain thermally activated delayed fluorescence. Adv. Sci., 2022, 9(19), 2200056. doi:10.1002/advs.202200056http://dx.doi.org/10.1002/advs.202200056
Rao J. C.; Liu X. R.; Li X. F.; Yang L. Q.; Zhao L.; Wang S. M.; Ding J. Q.; Wang L. X. Bridging small molecules to conjugated polymers: efficient thermally activated delayed fluorescence with a methyl-substituted phenylene linker. Angew. Chem. Int. Ed., 2020, 59(3), 1320-1326. doi:10.1002/anie.201912556http://dx.doi.org/10.1002/anie.201912556
Liu S.; Tian Y. T.; Yan L. B.; Wang S. M.; Zhao L.; Tian H. K.; Ding J. Q.; Wang L. X. Color tuning in thermally activated delayed fluorescence polymers with carbazole and tetramethylphenylene backbone. Macromolecules, 2023, 56(3), 876-882. doi:10.1021/acs.macromol.2c02316http://dx.doi.org/10.1021/acs.macromol.2c02316
Li X.; Yan L. B.; Liu S.; Wang S. M.; Rao J. C.; Zhao L.; Tian H. K.; Ding J. Q.; Wang L. X. Polymerized thermally activated delayed-fluorescence small molecules: long-axis polymerization leads to a nearly concentration-independent luminescence. Angew. Chem. Int. Ed., 2023, 62(19), e202300529. doi:10.1002/anie.202300529http://dx.doi.org/10.1002/anie.202300529
Long Y. B.; Chen X. J.; Wu H. Y.; Zhou Z. X.; Babu S. S.; Wu M. M.; Zhao J.; Aldred M. P.; Liu S. W.; Chen X. D.; Chi Z. G.; Xu J. R.; Zhang Y. Rigid polyimides with thermally activated delayed fluorescence for polymer light-emitting diodes with high external quantum efficiency up to 21. Angew. Chem. Int. Ed., 2021, 60(13), 7220-7226. doi:10.1002/anie.202016053http://dx.doi.org/10.1002/anie.202016053
Chen T. H.; Chen Z. X.; Ni F.; Xie G. H.; Yang C. L. Sky-blue thermally activated delayed fluorescence polymers by using a conjugation-confined poly(aryl ether) main chain. Polym. Chem., 2021, 12(16), 2490-2497. doi:10.1039/d1py00170ahttp://dx.doi.org/10.1039/d1py00170a
王利祥, 景遐斌, 王佛松. 单一高分子白光材料. 高分子学报, 2009, (10), 980-991. doi:10.3321/j.issn:1000-3304.2009.10.002http://dx.doi.org/10.3321/j.issn:1000-3304.2009.10.002
Wang T.; Song X. F.; Huang Z. Y.; Miao J. S.; Chen Z. X.; Cheng Y. X.; Yang C. L. Color-tunable TADF conjugated polymers toward voltage-regulating white OLEDs for intelligent lighting. Adv. Opt. Mater., 2024, 2303067. doi:10.1002/adom.202303067http://dx.doi.org/10.1002/adom.202303067
Zeng W. X.; Lai H. Y.; Lee W. K.; Jiao M.; Shiu Y. J.; Zhong C.; Gong S. L.; Zhou T.; Xie G. H.; Sarma M.; Wong K. T.; Wu C. C.; Yang C. L. Achieving nearly 30% external quantum efficiency for orange-red organic light emitting diodes by employing thermally activated delayed fluorescence emitters composed of 1,8-naphthalimide-acridine hybrids. Adv. Mater., 2018, 30(5), 1704961. doi:10.1002/adma.201870033http://dx.doi.org/10.1002/adma.201870033
Hoffmann R.; Wilker C. N.; Eisenstein O. On coupling carbenes and carbynes. J. Am. Chem. Soc., 1982, 104(2), 632-634. doi:10.1021/ja00366a052http://dx.doi.org/10.1021/ja00366a052
Zou J. H.; Wu H.; Lam C. S.; Wang C. D.; Zhu J.; Zhong C. M.; Hu S. J.; Ho C. L.; Zhou G. J.; Wu H. B.; Choy W. C. H.; Peng J. B.; Cao Y.; Wong W. Y. Simultaneous optimization of charge-carrier balance and luminous efficacy in highly efficient white polymer light-emitting devices. Adv. Mater., 2011, 23(26), 2976-2980. doi:10.1002/adma.201101130http://dx.doi.org/10.1002/adma.201101130
Kamtekar K. T.; Monkman A. P.; Bryce M. R. Recent advances in white organic light-emitting materials and devices (WOLEDs). Adv. Mater., 2010, 22(5), 572-582. doi:10.1002/adma.200902148http://dx.doi.org/10.1002/adma.200902148
Wang S. M.; Yang Q. Q.; Zhang B. H.; Zhao L.; Xia D. B.; Ding J. Q.; Xie Z. Y.; Wang L. X. Improving the power efficiency of solution-processed phosphorescent WOLEDs with a self-host blue iridium dendrimer. Adv. Opt. Mater., 2017, 5(23), 1700514. doi:10.1002/adom.201700514http://dx.doi.org/10.1002/adom.201700514
0
Views
138
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution