浏览全部资源
扫码关注微信
1.中国科学院理化技术研究所 光化学转换与功能材料重点实验室 北京 100190
2.中国科学院大学 北京 100049
Jin-ping Chen, E-mail: chenjp@mail.ipc.ac.cn
Yi Li, E-mail: yili@mail.ipc.ac.cn
Published:20 October 2024,
Published Online:11 June 2024,
Received:02 March 2024,
Accepted:03 April 2024
移动端阅览
安惠雯, 廉鹏, 陈金平, 于天君, 曾毅, 李嫕. 基于羧酸肟酯光敏基团的非化学放大型聚合物光刻胶. 高分子学报, 2024, 55(10), 1313-1324
An, H. W.; Lian, P.; Chen, J. P.; Yu, T. J.; Zeng, Y.; Li, Y. Nonchemically-amplified resists based on photosensitive oxime ester functionalized polystyrene. Acta Polymerica Sinica, 2024, 55(10), 1313-1324
安惠雯, 廉鹏, 陈金平, 于天君, 曾毅, 李嫕. 基于羧酸肟酯光敏基团的非化学放大型聚合物光刻胶. 高分子学报, 2024, 55(10), 1313-1324 DOI: 10.11777/j.issn1000-3304.2024.24065.
An, H. W.; Lian, P.; Chen, J. P.; Yu, T. J.; Zeng, Y.; Li, Y. Nonchemically-amplified resists based on photosensitive oxime ester functionalized polystyrene. Acta Polymerica Sinica, 2024, 55(10), 1313-1324 DOI: 10.11777/j.issn1000-3304.2024.24065.
合成了2种羧酸肟酯光敏基团修饰的苯乙烯类单体2
2
2-三氟-1-(4'-乙烯基-[1
1'-联苯
]
-4-基)乙-1-酮-
O
-(3-甲基苯甲酰基)肟(OXE-P)和2
2
2-三氟-1-(4'-乙烯基-[1
1'-联苯
]
-4-基)乙烷-1-酮-
O
-噻吩-2-甲酰肟(OXE-S)通过核磁共振氢谱(
1
H-NMR)、高分辨率质谱(HRMS)表征了单体分子结构. 采用可逆加成-断裂链转移(RAFT)聚合方法制备得了2种新型聚合物POXE-P和POXE-S,使用凝胶渗透色谱(GPC)表征了聚合物分子量大小及其分布. 结果表明,聚合物具有良好的溶解性、热稳定性和成膜性,满足作为光刻胶材料的要求. 将聚合物分别溶于光刻胶溶剂,形成非化学放大型光刻胶. 通过电子束光刻测
试了POXE-P非化学放大型光刻胶的光刻性能,结果表明,POXE-P光刻胶可获得50 nm HP (half-pitch)的光刻图案. 红外光谱(FTIR)和原位产物分析研究POXE-P光刻胶的曝光机理,表明肟酯结构在曝光后发生分解,形成了羰基化合物、二氧化碳等分子. 聚合物侧链的结构变化以及聚合物链间可能存在的自由基交联反应使得聚合物在曝光前后发生了溶解度转变,显影后形成负性光刻图案.
Two styrene derivatives 2
2
2-trifluoro-1-(4'-vinyl-[1
1'-biphenyl
]
-4-yl)ethan-1-one-
O
-(3-methylbenzoyl) oxime (OXE-P) and 2
2
2-trifluoro-1-(4'-vinyl-[1
1'-biphenyl
]
-4-yl)ethan-1-one-
O
-thiophene-2-carbonyl oxime
OXE-S) modified by photosensitive oxime ester group were synthesized. They were characterized by
1
H nuclear magnetic resonance (
1
H-NMR) spectroscopy and high-resolution mass spectrometry (HRMS). New polymers (POXE-P and POXE-S) were prepared by the reversible addition-fragmentation transfer (RAFT) polymerization
and were further characterized by gel permeation chromatography (GPC)
giving molecular weights (
M
w
) of 8.3 kDa and 7.2 kDa
and polydispersites (
Đ
) of 1.1. Both polymers possess good solubility
thermal stability and film-forming capability
which meet the requirements of resist
materials. The polymers were dissolved separately in the propylene glycol methyl ether acetate (PGMEA) to form nonchemically-amplified resists (n-CARs). The lithographic performance of the POXE-P resist was examined by e-beam lithography
giving a 50 nm HP (half-pitch) lithographic pattern. The mechanism of POXE-P resist during exposure was investigated by Fourier transform infrared spectrometer (FTIR) and
in situ
outgassing analysis. It showed that the oxime ester group decomposed during exposure to form carbonyl compounds
CO
2
and other small molecules. The cleavage of side chains and the possible crosslinking led to the solubility switch of the polymer
resulting in negative lithographic patterns.
非化学放大型光刻胶可逆加成-断裂链转移(RAFT)聚合羧酸肟酯电子束光刻机理
Nonchemically-amplified resistReversible addition-fracture chain transfer (RAFT) polymerizationOxime esterElectron beam lithographyMechanism
Hu S. W.; Chen J. P.; Yu T. J.; Zeng Y.; Wang S. Q.; Guo X. D.; Yang G. Q.; Li Y. A novel dual-tone molecular glass resist based on adamantane derivatives for electron beam lithography. J. Mater. Chem. C, 2022, 10(26), 9858-9866. doi:10.1039/d2tc01339hhttp://dx.doi.org/10.1039/d2tc01339h
Gangnaik A. S.; Georgiev Y. M.; Holmes J. D. New generation electron beam resists: a review. Chem. Mater., 2017, 29(5), 1898-1917. doi:10.1021/acs.chemmater.6b03483http://dx.doi.org/10.1021/acs.chemmater.6b03483
Dobisz E. A.; Brandow S. L.; Bass R.; Mitterender J. Effects of molecular properties on nanolithography in polymethyl methacrylate. J. Vac. Sci. Technol. B, 2000, 18(1), 107-111. doi:10.1116/1.591242http://dx.doi.org/10.1116/1.591242
Grigorescu A. E.; Hagen C. W. Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art. Nanotechnology, 2009, 20(29), 292001. doi:10.1088/0957-4484/20/29/292001http://dx.doi.org/10.1088/0957-4484/20/29/292001
Ghosh S.; Pradeep C. P.; Sharma S. K.; Reddy P. G.; Pal S. P.; Gonsalves K. E. Recent advances in non-chemically amplified photoresists for next generation IC technology. RSC Adv., 2016, 6(78), 74462-74481. doi:10.1039/c6ra12077fhttp://dx.doi.org/10.1039/c6ra12077f
Yu A. G.; Liu H. P.; Blinco J. P.; Jack K. S.; Leeson M.; Younkin T. R.; Whittaker A. K.; Blakey I. Patterning of tailored polycarbonate based non-chemically amplified resists using extreme ultraviolet lithography. Macromol. Rapid Commun., 2010, 31(16), 1449-1455. doi:10.1002/marc.201000117http://dx.doi.org/10.1002/marc.201000117
Lu X. Y.; Luo H.; Wang K.; Zhang Y. Y.; Zhu X. F.; Li D. X.; Ma B. Z.; Xiong S. S.; Nealey P. F.; Li Q.; Wu G. P. CO2-based dual-tone resists for electron beam lithography. Adv. Funct. Mater., 2021, 31(13), 2007417. doi:10.1002/adfm.202170086http://dx.doi.org/10.1002/adfm.202170086
Lawrie K. J.; Blakey I.; Blinco J. P.; Cheng H. H.; Gronheid R.; Jack K. S.; Pollentier I.; Leeson M. J.; Younkin T. R.; Whittaker A. K. Chain scission resists for extreme ultraviolet lithography based on high performance polysulfone-containing polymers. J. Mater. Chem., 2011, 21(15), 5629-5637. doi:10.1039/c0jm03288chttp://dx.doi.org/10.1039/c0jm03288c
Chen L.; Goh Y. K.; Lawrie K.; Chuang Y. M.; Piscani E.; Zimmerman P.; Blakey I.; Whittaker A. K. Polysulfone based non-CA resists for 193 nm immersion lithography: effect of increasing polymer absorbance on sensitivity. Radiat. Phys. Chem., 2011, 80(2), 242-247. doi:10.1016/j.radphyschem.2010.07.040http://dx.doi.org/10.1016/j.radphyschem.2010.07.040
Thakur N.; Vockenhuber M.; Ekinci Y.; Watts B.; Giglia A.; Mahne N.; Nannarone S.; Castellanos S.; Brouwer A. M. Fluorine-rich zinc oxoclusters as extreme ultraviolet photoresists: chemical reactions and lithography performance. ACS Mater. Au, 2022, 2(3), 343-355. doi:10.1021/acsmaterialsau.1c00059http://dx.doi.org/10.1021/acsmaterialsau.1c00059
Yoshiiwa M.; Kageyama H.; Shirota Y.; Wakaya F.; Gamo K. J.; Takai M. Novel class of low molecular-weight organic resists for nanometer lithography. Appl. Phys. Lett., 1996, 69(17), 2605-2607. doi:10.1063/1.117714http://dx.doi.org/10.1063/1.117714
Ishida M.; Fujita J. I.; Ogura T.; Ochiai Y.; Ohshima E.; Momoda J. Sub-10-nm-scale lithography usingp-chloromethyl-methoxy-calix[4]resistarene. Jpn. J. Appl. Phys., 2003, 42(6S), 3913-3916. doi:10.1143/jjap.42.3913http://dx.doi.org/10.1143/jjap.42.3913
曹春, 邱毅伟, 刘建亭, 朱大钊, 丁晨良, 杨臻垚, 匡翠方, 刘旭. 聚乙烯吡咯烷酮杂化双色光敏激光直写光刻胶研究. 高分子学报, 2022, 53(6), 608-616. doi:10.11777/j.issn1000-3304.2021.21323http://dx.doi.org/10.11777/j.issn1000-3304.2021.21323
胥娥, 黄宇, 熊璐璐, 况涵钊, 郑海, 王燚, 夏小超, 王锋, 崔旭东, 黄炎昊. 光致驱动聚醚的主/侧链结构设计及光致形变性能调控. 高分子学报, 2024, 55(4), 438-451. doi:10.11777/j.issn1000-3304.2023.23261http://dx.doi.org/10.11777/j.issn1000-3304.2023.23261
Shirai M.; Maki K.; Okamura H.; Kaneyama K.; Itani T. Negative EUV resist based on thiol-ene system. J. Photopol. Sci. Technol., 2010, 23(5), 687-691. doi:10.2494/photopolymer.23.687http://dx.doi.org/10.2494/photopolymer.23.687
Wang Q. Q.; Cui H.; Wang X. L.; Hu Z. Y.; Tao P. P.; Li M. Y.; Wang J. L.; Tang Y. P.; Xu H.; He X. M. Exceptional light sensitivity by thiol-ene click lithography. J. Am. Chem. Soc., 2023, 145(5), 3064-3074. doi:10.1021/jacs.2c11887http://dx.doi.org/10.1021/jacs.2c11887
Singh V.; Satyanarayana V. S. V.; Sharma S. K.; Ghosh S.; Gonsalves K. E. Towards novel non-chemically amplified (n-CARS) negative resists for electron beam lithography applications. J. Mater. Chem. C, 2014, 2(12), 2118-2122. doi:10.1039/c3tc31826ehttp://dx.doi.org/10.1039/c3tc31826e
Sharma S. K.; Pal S. P.; Reddy P. G.; Kumar P.; Ghosh S.; Gonsalves K. E. Design and development of low activation energy based nonchemically amplified resists (n-CARs) for next generation EUV lithography. Microelectron. Eng., 2016, 164, 115-122. doi:10.1016/j.mee.2016.07.017http://dx.doi.org/10.1016/j.mee.2016.07.017
Wang Z. H.; Chen J. P.; Yu T. J.; Zeng Y.; Guo X. D.; Wang S. Q.; Allenet T.; Vockenhuber M.; Ekinci Y.; Yang G. Q.; Li Y. Sulfonium-functionalized polystyrene-based nonchemically amplified resists enabling sub-13 nm nanolithography. ACS Appl. Mater. Interfaces, 2023, 15(1), 2289-2300. doi:10.1021/acsami.2c19940http://dx.doi.org/10.1021/acsami.2c19940
Wang Y. K.; Chen J. P.; Zeng Y.; Yu T. J.; Wang S. Q.; Guo X. D.; Hu R.; Tian P.; Vockenhuber M.; Kazazis D.; Ekinci Y.; Wu Y. Q.; Yang S. M.; Zhao J.; Yang G. Q.; Li Y. Nonchemically amplified molecular resists based on sulfonium-functionalized sulfone derivatives for sub-13 nm nanolithography. ACS Appl. Nano Mater., 2023, 6(19), 18480-18490. doi:10.1021/acsanm.3c03900http://dx.doi.org/10.1021/acsanm.3c03900
Fast D. E.; Lauer A.; Menzel J. P.; Kelterer A. M.; Gescheidt G.; Barner-Kowollik C. Wavelength-dependent photochemistry of oxime ester photoinitiators. Macromolecules, 2017, 50(5), 1815-1823. doi:10.1021/acs.macromol.7b00089http://dx.doi.org/10.1021/acs.macromol.7b00089
Noon A.; Hammoud F.; Graff B.; Hamieh T.; Toufaily J.; Morlet-Savary F.; Schmitt M.; Bui T. T.; Rico A.; Goubard F.; Péralta S.; Dumur F.; Lalevée J. Photoinitiation mechanisms of novel phenothiazine-based oxime and oxime esters acting as visible light sensitive type I and multicomponent photoinitiators. Adv. Mater. Technol., 2023, 8(16), 2300205. doi:10.1002/admt.202300205http://dx.doi.org/10.1002/admt.202300205
Zhou R. C.; Pan H. Y.; Wan D. C.; Malval J.; Jin M. Bicarbazole-based oxime esters as novel efficient photoinitiators for photopolymerization under UV-Vis LEDs. Prog. Org. Coat., 2021, 157, 106306. doi:10.1016/j.porgcoat.2021.106306http://dx.doi.org/10.1016/j.porgcoat.2021.106306
Peter J.; Moinuddin M. G.; Ghosh S.; Sharma S. K.; Gonsalves K. E. Organotin in nonchemically amplified polymeric hybrid resist imparts better resolution with sensitivity for next-generation lithography. ACS Appl. Polym. Mater., 2020, 2(5), 1790-1799. doi:10.1021/acsapm.0c00005http://dx.doi.org/10.1021/acsapm.0c00005
Kozawa T.; Tagawa S. Radiation chemistry in chemically amplified resists. Jpn. J. Appl. Phys., 2010, 49(3R), 030001. doi:10.1143/jjap.49.030001http://dx.doi.org/10.1143/jjap.49.030001
Shirai M.; Okamura H. I-Line sensitive photoacid generators for UV curing. Prog. Org. Coat., 2009, 64(2-3), 175-181. doi:10.1016/j.porgcoat.2008.08.026http://dx.doi.org/10.1016/j.porgcoat.2008.08.026
0
Views
242
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution