浏览全部资源
扫码关注微信
1.浙江省高分子材料表面与界面科学重点实验室 浙江理工大学化学与化工学院 杭州 310018
2.复旦大学聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200433
Qing-liang Song, E-mail: qlsong@fudan.edu.cn
Mei-jiao Liu, E-mail: mjliu@zstu.edu.cn
Published:20 October 2024,
Published Online:12 June 2024,
Received:09 March 2024,
Accepted:12 April 2024
移动端阅览
徐明虎, 宋青亮, 刘美娇. 接枝位置异构的笼型两亲性分子的自组装模拟. 高分子学报, 2024, 55(10), 1405-1413
Xu, M. H.; Song, Q. L.; Liu, M. J. Dissipative particle dynamics simulation of self-assembly of regio-isomeric cage-type amphiphiles in bulk. Acta Polymerica Sinica, 2024, 55(10), 1405-1413
徐明虎, 宋青亮, 刘美娇. 接枝位置异构的笼型两亲性分子的自组装模拟. 高分子学报, 2024, 55(10), 1405-1413 DOI: 10.11777/j.issn1000-3304.2024.24075.
Xu, M. H.; Song, Q. L.; Liu, M. J. Dissipative particle dynamics simulation of self-assembly of regio-isomeric cage-type amphiphiles in bulk. Acta Polymerica Sinica, 2024, 55(10), 1405-1413 DOI: 10.11777/j.issn1000-3304.2024.24075.
利用耗散粒子动力学(DPD)方法模拟了接枝在笼型分子不同顶点的双链分子形成的邻、间和对3种位置异构体的自组装行为. 研究结果表明,随着接枝链长增加,3种位置异构体的自组装结构的相序列和稳定相区间有显著区别,接枝链长较短时,尾链聚集的有序结构的曲率以邻、间、对位的顺序依次升高;而接枝链较长时,不同异构体中笼型分子会堆砌成不同的双连续结构. 模拟结果还预测到,3种位置异构体的有序-无序相转变温度(
T
ODT
)按照邻、间、对的顺序降低,且3种位置异构的两两组合异构体系的
T
ODT
也符合该变化规律;这些相行为的差异可以从分子链的堆积方式的微观角度来理解.该研究证实了微小的结构单元的差异可以对自组装结果产生深远的影响,从而为探索软物质体系的非常规的自组装结构提供了新的思路.
The self-assembly behavior of three regio-isomers
namely the
ortho
-
meta
-
and
para
-isomers
formed by double chains grafted at different vertices of cage-like molecules
was simulated using the dissipative particle dynamics (DPD) method. The results indicate that a long the varying length of the grafting chains the three regio- isomers exhibit inconsistent regulation of the emergence and stability of self-assembled structures. Specifically
when the grafting chains are relatively short
the curvature of the ordered structures self-assembled by the tail chains increases in the order of
ortho
-
meta
-
and
para
-isomer. In contrast
when the grafting chains are longer
the cage-like molecules in different isomers tend to stack into distinct bicontinuous structures. The simulation results also predict that the temperature of the order-disorder transition (
T
ODT
) for the three regio-isomers decreases in the order of
ortho
-
meta
-
and
para
-
and this trend is consistent with the
T
ODT
of the combined regio-isomers. The diverse phase behaviors in the regio-isomers can be understood from the different conformation of the chains and packing of the cage molecules. This study clarifies that the tiny differences in the structural unit can profoundly impact the self-assembled structures
which offers new insights into exploring unconventional order structures self-assembled in soft matters.
笼型分子嵌段共聚物耗散粒子动力学自组装
Cage-like moleculeBlock copolymerDissipative particle dynamics (DPD)Self-assembly
Zhang W. B.; Wu X. L.; Yin G. Z.; Shao Y.; Cheng S. Z. D. From protein domains to molecular nanoparticles: what can giant molecules learn from proteins? Mater. Horiz., 2017, 4(2), 117-132. doi:10.1039/c6mh00448bhttp://dx.doi.org/10.1039/c6mh00448b
Yu X. F.; Li Y. W.; Dong X. H.; Yue K.; Lin Z. W.; Feng X. Y.; Huang M. J.; Zhang W. B.; Cheng S. Z. D. Giant surfactants based on molecular nanoparticles: precise synthesis and solution self-assembly. J. Polym. Sci. Part B Polym. Phys., 2014, 52(20), 1309-1325. doi:10.1002/polb.23571http://dx.doi.org/10.1002/polb.23571
Li Z.; Zhang J. H.; Fu Y.; Yang L.; Zhu F.; Liu X. H.; Gu Z. P.; Li Y. W. Antioxidant shape amphiphiles for accelerated wound healing. J. Mater. Chem. B, 2020, 8(31), 7018-7023. doi:10.1039/d0tb00578ahttp://dx.doi.org/10.1039/d0tb00578a
Du Y. J.; Liu H. Z. Cage-like silsesquioxanes-based hybrid materials. Dalton Trans., 2020, 49(17), 5396-5405. doi:10.1039/d0dt00587hhttp://dx.doi.org/10.1039/d0dt00587h
Liu Y. C.; Yan X. Y.; Guo Q. Y.; Lei H. Y.; Liu X. Y.; Li X. H.; Wu Y. A.; Zhang W.; Liu G. X.; Cheng S. Z. D. Recent progress on the rheology of giant molecules. Macromol. Chem. Phys., 2023, 224(3), 2200357. doi:10.1002/macp.202200357http://dx.doi.org/10.1002/macp.202200357
Zhang W. B.; Yu X. F.; Wang C. L.; Sun H. J.; Hsieh I. F.; Li Y. W.; Dong X. H.; Yue K.; van Horn R.; Cheng S. Z. D. Molecular nanoparticles are unique elements for macromolecular science: from "Nanoatoms" to giant molecules. Macromolecules, 2014, 47(4), 1221-1239. doi:10.1021/ma401724phttp://dx.doi.org/10.1021/ma401724p
Yin G. Z.; Zhang W. B.; Cheng S. Z. D. Giant molecules: where chemistry, physics, and bio-science meet. Sci. China Chem., 2017, 60(3), 338-352. doi:10.1007/s11426-016-0436-xhttp://dx.doi.org/10.1007/s11426-016-0436-x
Yu X. F.; Zhang W. B.; Yue K.; Li X. P.; Liu H.; Xin Y.; Wang C. L.; Wesdemiotis C.; Cheng S. Z. D. Giant molecular shape amphiphiles based on polystyrene-hydrophilic[60] fullereneconjugates: click synthesis, solution self-assembly, and phase behavior. J. Am. Chem. Soc., 2012, 134(18), 7780-7787. doi:10.1021/ja3000529http://dx.doi.org/10.1021/ja3000529
Ni B.; Huang M. J.; Chen Z. R.; Chen Y. C.; Hsu C. H.; Li Y. W.; Pochan D.; Zhang W. B.; Cheng S. Z. D.; Dong X. H. Pathway toward large two-dimensional hexagonally patterned colloidal nanosheets in solution. J. Am. Chem. Soc., 2015, 137(4), 1392-1395. doi:10.1021/ja511694ahttp://dx.doi.org/10.1021/ja511694a
Yu X. F.; Zhong S.; Li X. P.; Tu Y. F.; Yang S. G.; Van Horn R. M.; Ni C. Y.; Pochan D. J.; Quirk R. P.; Wesdemiotis C.; Zhang W. B.; Cheng S. Z. D. A giant surfactant of polystyrene-(carboxylic acid-functionalized polyhedral oligomeric silsesquioxane) amphiphile with highly stretched polystyrene tails in micellar assemblies. J. Am. Chem. Soc., 2010, 132(47), 16741-16744. doi:10.1021/ja1078305http://dx.doi.org/10.1021/ja1078305
Zhang W.; Lu X. L.; Mao J. L.; Hsu C. H.; Mu G. Y.; Huang M. J.; Guo Q. Y.; Liu H.; Wesdemiotis C.; Li T.; Zhang W. B.; Li Y. W.; Cheng S. Z. D. Sequence-mandated, distinct assembly of giant molecules. Angew. Chem. Int. Ed., 2017, 56(47), 15014-15019. doi:10.1002/anie.201709354http://dx.doi.org/10.1002/anie.201709354
Zhang W.; Shan W. P.; Zhang S. L.; Liu Y. C.; Su H.; Luo J. C.; Xia Y. F.; Li T.; Wesdemiotis C.; Liu T. B.; Cui H. G.; Li Y. W.; Cheng S. Z. D. Sequence isomeric giant surfactants with distinct self-assembly behaviors in solution. Chem. Commun., 2019, 55(5), 636-639. doi:10.1039/c8cc09207ahttp://dx.doi.org/10.1039/c8cc09207a
Feng F. F.; Shao Y.; Wu W. J.; Li X. Q.; Hong C. Y.; Jin L.; Yue K.; Zhang W. B.; Liu H. Crystallization of precise side-chain giant molecules with tunable sequences and functionalities. Macromolecules, 2021, 54(23), 11093-11100. doi:10.1021/acs.macromol.1c01958http://dx.doi.org/10.1021/acs.macromol.1c01958
Chu Y.; Zhang W.; Lu X. L.; Mu G. Y.; Zhang B. F.; Li Y. W.; Cheng S. Z. D.; Liu T. B. Rational controlled morphological transitions in the self-assembled multi-headed giant surfactants in solution. Chem. Commun., 2016, 52(56), 8687-8690. doi:10.1039/c6cc04567ghttp://dx.doi.org/10.1039/c6cc04567g
Feng F. F.; Guo D.; Shao Y.; Yan X.; Yue K.; Pan Z. P.; Li X. Q.; Xiao D. C.; Jin L.; Zhang W. B.; Liu H. Thickness control of 2D nanosheets assembled from precise side-chain giant molecules. Chem. Sci., 2021, 12(14), 5216-5223. doi:10.1039/d1sc00021ghttp://dx.doi.org/10.1039/d1sc00021g
Yan X. Y.; Lin Z. W.; Zhang W.; Xu H.; Guo Q. Y.; Liu Y. C.; Luo J. C.; Liu X. Y.; Zhang R. C.; Huang J. H.; Liu T.; Su Z. B.; Zhang R. M.; Zhang S. L.; Liu T. B.; Cheng S. Z. D. Magnifying the structural components of biomembranes: a prototype for the study of the self-assembly of giant lipids. Angew. Chem. Int. Ed., 2020, 59(13), 5226-5234. doi:10.1002/anie.201916149http://dx.doi.org/10.1002/anie.201916149
Lin Z. W.; Lu P. T.; Hsu C. H.; Sun J.; Zhou Y. B.; Huang M. J.; Yue K.; Ni B.; Dong X. H.; Li X. C.; Zhang W. B.; Yu X. F.; Cheng S. Z. D. Hydrogen-bonding-induced nanophase separation in giant surfactants consisting of hydrophilic[60]fullerene tethered to block copolymers at different locations. Macromolecules, 2015, 48(16), 5496-5503. doi:10.1021/acs.macromol.5b00741http://dx.doi.org/10.1021/acs.macromol.5b00741
Dong X. H.; Ni B.; Huang M. J.; Hsu C. H.; Chen Z. R.; Lin Z. W.; Zhang W. B.; Shi A. C.; Cheng S. Z. D. Chain overcrowding induced phase separation and hierarchical structure formation in fluorinated polyhedral oligomeric silsesquioxane (FPOSS)-based giant surfactants. Macromolecules, 2015, 48(19), 7172-7179. doi:10.1021/acs.macromol.5b01661http://dx.doi.org/10.1021/acs.macromol.5b01661
Ni B.; Qu H. R.; Mao J. L.; Bai R. B.; Zhang S. L.; Feng X. Y.; Wesdemiotis C.; Dong X. H.; Cheng S. Z. D. Facile synthesis and linker guided self-assembly of dendron-like amphiphiles. Polymer, 2019, 167, 118-121. doi:10.1016/j.polymer.2019.01.051http://dx.doi.org/10.1016/j.polymer.2019.01.051
Zhou D. D.; Xu M.; Gan Z. H.; Yan X. Y.; Ma Z.; Zheng J. C.; Dong X. H. Discrete diblock copolymers with precise stereoconfiguration. Macromolecules, 2023, 56(5), 1855-1862. doi:10.1021/acs.macromol.2c02506http://dx.doi.org/10.1021/acs.macromol.2c02506
Wang X. M.; Shao Y.; Xu J.; Jin X.; Shen R. H.; Jin P. F.; Shen D. W.; Wang J.; Li W. H.; He J. L.; Ni P. H.; Zhang W. B. Precision synthesis and distinct assembly of double-chain giant surfactant regioisomers. Macromolecules, 2017, 50(10), 3943-3953. doi:10.1021/acs.macromol.7b00503http://dx.doi.org/10.1021/acs.macromol.7b00503
Wang X. M.; Shao Y.; Jin P. F.; Jiang W. B.; Hu W.; Yang S. G.; Li W. H.; He J. L.; Ni P. H.; Zhang W. B. Influence of regio-configuration on the phase diagrams of double-chain giant surfactants. Macromolecules, 2018, 51(3), 1110-1119. doi:10.1021/acs.macromol.7b02383http://dx.doi.org/10.1021/acs.macromol.7b02383
Liu Z. G.; Chen X.; Yang Z.; Wang S.; Gan Z. H.; Li G.; Dong X. H. Precise amphiphilic giant polymeric chain based on nanosized monomers with exact regio-configuration. ACS Nano, 2021, 15(7), 12367-12374. doi:10.1021/acsnano.1c04486http://dx.doi.org/10.1021/acsnano.1c04486
Han D.; Shao Y.; Tao Y. D.; Han G.; Zhou D. L.; Yang S. G.; Zhang W. B.; Fu Q. Symmetry-guided, divergent assembly of regio-isomeric molecular Janus particles. Chem. Commun., 2019, 55(45), 6425-6428. doi:10.1039/c9cc02296ahttp://dx.doi.org/10.1039/c9cc02296a
Shao Y.; Xu X.; Yin G. Z.; Han S. Y.; Han D.; Fu Q.; Yang S. G.; Zhang W. B. Symmetry-dictated mesophase formation and phase diagram of perfluorinated polyhedral oligomeric silsesquioxanes. Macromolecules, 2019, 52(6), 2361-2370. doi:10.1021/acs.macromol.9b00138http://dx.doi.org/10.1021/acs.macromol.9b00138
Liu Z. G.; Wang S.; Li G.; Yang Z.; Gan Z. H.; Dong X. H. Discrete giant polymeric chain with precise sequence and regio-configuration: a concise multiblock model system. Macromolecules, 2022, 55(14), 5954-5963. doi:10.1021/acs.macromol.2c00992http://dx.doi.org/10.1021/acs.macromol.2c00992
Shao Y.; Han D.; Yan X. J.; Hou B.; Li Y. W.; He J. L.; Fu Q.; Zhang W. B. Phase behaviors of multi-tailed B2AB2-type regio-isomeric giant surfactants at the columnar-spherical boundary. Chin. J. Chem., 2021, 39(12), 3261-3268. doi:10.1002/cjoc.202100453http://dx.doi.org/10.1002/cjoc.202100453
Shao Y.; Han D.; Tao Y. D.; Feng F. F.; Han G.; Hou B.; Liu H.; Yang S. G.; Fu Q.; Zhang W. B. Leveraging macromolecular isomerism for phase complexity in Janus nanograins. ACS Cent. Sci., 2023, 9(2), 289-299. doi:10.1021/acscentsci.2c01405http://dx.doi.org/10.1021/acscentsci.2c01405
Li G.; Gan Z. H.; Liu Y. C.; Wang S.; Guo Q. Y.; Liu Z. G.; Tan R.; Zhou D. D.; Kong D. Y.; Wen T.; Dong X. H. Molecular patchy clusters with controllable symmetry breaking for structural engineering. ACS Nano, 2020, 14(10), 13816-13823. doi:10.1021/acsnano.0c06189http://dx.doi.org/10.1021/acsnano.0c06189
Ma S. Y.; Hu Y.; Wang R. Self-assembly of polymer tethered molecular nanoparticle shape amphiphiles in selective solvents. Macromolecules, 2015, 48(9), 3112-3120. doi:10.1021/ma5026219http://dx.doi.org/10.1021/ma5026219
Li Q. X.; Wang Z.; Yin Y. H.; Jiang R.; Li B. H. Self-assembly of giant amphiphiles based on polymer-tethered nanoparticle in selective solvents. Macromolecules, 2018, 51(8), 3050-3058. doi:10.1021/acs.macromol.8b00189http://dx.doi.org/10.1021/acs.macromol.8b00189
Hoogerbrugge P. J.; Koelman J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL Europhys. Lett., 1992, 19, 155. doi:10.1209/0295-5075/19/3/001http://dx.doi.org/10.1209/0295-5075/19/3/001
Koelman J. M. V. A.; Hoogerbrugge P. J. Dynamic simulations of hard-sphere suspensions under steady shear. EPL Europhys. Lett., 1993, 21, 363. doi:10.1209/0295-5075/21/3/018http://dx.doi.org/10.1209/0295-5075/21/3/018
Espanol P.; Warren P. Statistical mechanics of dissipative particle dynamics. EPL Europhys. Lett., 1995, 30(4), 191-196. doi:10.1209/0295-5075/30/4/001http://dx.doi.org/10.1209/0295-5075/30/4/001
Song Q. L.; Dong Q. S.; Dong X. H.; Zhu Y. L.; Li W. H. Self-assembly behaviors of giant amphiphiles containing cubic cage-like "monomers". Macromolecules, 2021, 54(18), 8601-8611. doi:10.1021/acs.macromol.1c01431http://dx.doi.org/10.1021/acs.macromol.1c01431
Horsch M. A.; Zhang Z. L.; Iacovella C. R.; Glotzer S. C. Hydrodynamics and microphase ordering in block copolymers: are hydrodynamics required for ordered phases with periodicity in more than one dimension? J. Chem. Phys., 2004, 121(22), 11455-11462. doi:10.1063/1.1814976http://dx.doi.org/10.1063/1.1814976
Zhu Y. L.; Liu H.; Li Z. W.; Qian H. J.; Milano G.; Lu Z. Y. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit. J. Comput. Chem., 2013, 34(25), 2197-2211. doi:10.1002/jcc.23365http://dx.doi.org/10.1002/jcc.23365
Matsen M. W. Effect of architecture on the phase behavior of AB-type block copolymer melts. Macromolecules, 2012, 45(4), 2161-2165. doi:10.1021/ma202782shttp://dx.doi.org/10.1021/ma202782s
Huang H. J.; Alexander-Katz A. Dissipative particle dynamics for directed self-assembly of block copolymers. J. Chem. Phys., 2019, 151(15), 154905. doi:10.1063/1.5117839http://dx.doi.org/10.1063/1.5117839
Jiang W. B.; Qiang Y. C.; Li W. H.; Qiu F.; Shi A. C. Effects of chain topology on the self-assembly of AB-type block copolymers. Macromolecules, 2018, 51(4), 1529-1538. doi:10.1021/acs.macromol.7b02389http://dx.doi.org/10.1021/acs.macromol.7b02389
Liu Z. G.; Wang S.; Yang Z.; Dong X. H. Regioisomeric giant triblock molecules: role of the linker. Macromol. Rapid Commun., 2023, 44(1), 2200509. doi:10.1002/marc.202200509http://dx.doi.org/10.1002/marc.202200509
0
Views
288
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution