浏览全部资源
扫码关注微信
大连理工大学 精细化工国家重点实验室 化工学院 大连 116024
Zhi-yu Wang, E-mail: zywang@dlut.edu.cn
Published:20 October 2024,
Published Online:20 June 2024,
Received:14 March 2024,
Accepted:29 April 2024
移动端阅览
李沛达, 王治宇. 一种基于聚合物复合薄膜的n-p型湿热发电机. 高分子学报, 2024, 55(10), 1430-1440
Li, P. D.; Wang, Z. Y. An n-p type moisture-heat induced electricity generator based on polymer composite membrane. Acta Polymerica Sinica, 2024, 55(10), 1430-1440
李沛达, 王治宇. 一种基于聚合物复合薄膜的n-p型湿热发电机. 高分子学报, 2024, 55(10), 1430-1440 DOI: 10.11777/j.issn1000-3304.2024.24078.
Li, P. D.; Wang, Z. Y. An n-p type moisture-heat induced electricity generator based on polymer composite membrane. Acta Polymerica Sinica, 2024, 55(10), 1430-1440 DOI: 10.11777/j.issn1000-3304.2024.24078.
从环境中广泛存在的湿气中获取电能的绿色发电技术近年来备受瞩目. 本研究提出一种简易高效的方法,制备了内含热氧化还原对的n型和p型湿热产电聚合物复合薄膜. 并以之构建n-p型湿热发电器件,同时利用环境中的湿气化学势与低品位热能产生电能. 研究表明温度与湿度梯度可以协同促进湿热产电薄膜中的离子扩散和器件产电能力,在其体系中引入热氧化还原对可进一步强化环境热能向电能的转换. 在80% RH和20 ℃温差条件下,此n-p型湿热发电器件的功率密度为17 μW·cm
-2
. 集成9个器件可以仅依靠人体表面的湿热能量产生4~8 V电压. 此类器件具有环境刺激响应快速、环境适应性好、轻薄柔性、绿色环保的特点,在自供能可穿戴电子、传感、人体健康监测等领域具有潜在应用前景.
The technologies for harvesting green electricity from the ubiquitous moisture in the environment have garnered significant attention in recent years. This study proposed a facile approach for fabricating the n-type and p-type polymer composite membranes containing thermal redox couples
enabling a n-p type moisture-heat induced electricity generator (n-p-MHEG) for generating electricity from the chemical potential of moisture and low-grade heat in the environment. It reveals that temperature and moisture gradients synergistically enhance the ionic migration and capability of power generation of n-p-MHEG. The introduction of thermal redox couples further improves the conversion of thermal energy in the environment into electricity. The power density of n-p-MHEG can reach 17 μW·cm
-2
under a temperature difference of 20 ℃ at 80% RH. By integrating nine such devices
it is possible to generate high voltages of 4-8 V from the moisture and thermal energy of the human skin. This type of flexible device with rapid response to environmental stimuli
excellent environmental adaptability
lightweight and eco-friendliness has potential applications in self-powered wearable electronics
sensing
and human health monitoring.
湿热发电机聚合物复合薄膜温度梯度湿度梯度发电
Moisture-heat induced electricity generatorPolymer composite membraneTemperature gradientMoisture gradientPower generation
Sheng C.; Jiao J. J.; Luo X.; Zuo J. C.; Jia L.; Cao J. H. Offshore freshened groundwater in the pearl river estuary and shelf as a significant water resource. Nat. Commun., 2023, 14, 3781. doi:10.1038/s41467-023-39507-0http://dx.doi.org/10.1038/s41467-023-39507-0
Zhang Z. h.; Li X. M.; Yin J.; Xu Y.; Fei W. W.; Xue M. M.; Wang Q.; Zhou J. X.; Guo W. L. Emerging hydrovoltaic technology. Nat. Nanotechnol., 2018, 13(12), 1109-1119. doi:10.1038/s41565-018-0228-6http://dx.doi.org/10.1038/s41565-018-0228-6
Yin J.; Zhou J. X.; Fang S. M.; Guo W. L. Hydrovoltaic energy on the way. Joule, 2020, 4(9), 1852-1855. doi:10.1016/j.joule.2020.07.015http://dx.doi.org/10.1016/j.joule.2020.07.015
Shao B. B.; Song Y. H.; Song Z. H.; Wang Y. N.; Wang Y. S.; Liu R. Y.; Sun B. Q. Electricity generation from phase transitions between liquid and gaseous water. Adv. Engery Mater., 2023, 13(16), 2204091. doi:10.1002/aenm.202204091http://dx.doi.org/10.1002/aenm.202204091
Bae J.; Yun T. G.; Suh B. L.; Kim J.; Kim I. D. Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle. Energy Environ. Sci., 2020, 13(2), 527-534. doi:10.1039/c9ee02616ahttp://dx.doi.org/10.1039/c9ee02616a
Huang Y. X.; Cheng H. H.; Yang C.; Yao H. Z.; Li C.; Qu L. T. All-region-applicable, continuous power supply of graphene oxide composite. Energy Environ. Sci., 2019, 12(6), 1848-1856. doi:10.1039/c9ee00838ahttp://dx.doi.org/10.1039/c9ee00838a
Zhao F.; Cheng H. H.; Zhang Z. P.; Jiang L.; Qu L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater., 2015, 27(29), 4351-4357. doi:10.1002/adma.201501867http://dx.doi.org/10.1002/adma.201501867
Wang H. Y.; He T. C.; Hao X. Z.; Huang Y. X.; Yao H. Z.; Liu F.; Cheng H. H.; Qu L. T. Moisture adsorption-desorption full cycle power generation. Nat. Commun., 2022, 13, 2524. doi:10.1038/s41467-022-30156-3http://dx.doi.org/10.1038/s41467-022-30156-3
Shen D.; Xiao M.; Xiao Y.; Zou G.; Hu L.; Zhao B.; Liu L.; Duley W. W.; Zhou Y. N. Self-powered, rapid-response, and highly flexible humidity sensors based on moisture-dependent voltage generation. ACS Appl. Mater. Interfaces, 2019, 11(15), 14249-14255. doi:10.1021/acsami.9b01523http://dx.doi.org/10.1021/acsami.9b01523
Wang H. Y.; Cheng H. H.; Huang Y. X.; Yang C.; Wang D. B.; Li C.; Qu L. T. Transparent, self-healing, arbitrary tailorable moist-electric film generator. Nano Energy, 2020, 67, 104238. doi:10.1016/j.nanoen.2019.104238http://dx.doi.org/10.1016/j.nanoen.2019.104238
Bai J. X.; Huang Y. X.; Wang H. Y.; Guang T. L.; Liao Q. H.; Cheng H. H.; Deng S. H.; Li Q. K.; Shuai Z. G.; Qu L. T. Sunlight-coordinated high-performance moisture power in natural conditions. Adv. Mater., 2022, 34(10), 2103897. doi:10.1002/adma.202103897http://dx.doi.org/10.1002/adma.202103897
Liu X.; Gao H.; Ward J. E.; Liu X.; Yin B.; Fu T.; Chen J.; Lovley D. R.; Yao J. Power generation from ambient humidity using protein nanowires. Nature, 2020, 578, 550-554. doi:10.1038/s41586-020-2010-9http://dx.doi.org/10.1038/s41586-020-2010-9
Zhu R. B.; Zhu Y. Z.; Hu L.; Guan P. Y.; Su D. W.; Zhang S.; Liu C.; Feng Z. H.; Hu G. Y.; Chen F. D.; Wan T.; Guan X. W.; Wu T.; Joshi R.; Li M.; Cazorla C.; Lu Y. R.; Han Z. Z.; Xu H. L.; Chu D. W. Lab free protein-based moisture electric generators with a high electric output. Energy Environ. Sci., 2023, 16(5), 2338-2345. doi:10.1039/d3ee00770ghttp://dx.doi.org/10.1039/d3ee00770g
Li Q. J.; Zhou M.; Yang Q. F.; Yang M. Y.; Wu Q.; Zhang Z. X.; Yu J. W. Flexible carbon dots composite paper for electricity generation from water vapor absorption. J. Mater. Chem. A, 2018, 6(23), 10639-10643. doi:10.1039/c8ta02505chttp://dx.doi.org/10.1039/c8ta02505c
Bai J. X.; Huang Y. X.; Cheng H. H.; Qu L. T. Moist-electric generation. Nanoscale, 2019, 11(48), 23083-23091. doi:10.1039/c9nr06113dhttp://dx.doi.org/10.1039/c9nr06113d
Jia Y. H.; Jiang Q. L.; Sun H. D.; Liu P. P.; Hu D. H.; Pei Y. Z.; Liu W. S.; Crispin X.; Fabiano S.; Ma Y. G.; Cao Y. Wearable thermoelectric materials and devices for self-powered electronic systems. Adv. Mater., 2021, 33(42), 2102990. doi:10.1002/adma.202102990http://dx.doi.org/10.1002/adma.202102990
Manjakkal L.; Yin L.; Nathan A.; Wang J.; Dahiya R. Energy autonomous sweat-based wearable systems. Adv. Mater., 2021, 33(35), 2100899. doi:10.1002/adma.202100899http://dx.doi.org/10.1002/adma.202100899
Han C. G.; Zhu Y. B.; Yang L.; Chen J.; Liu S.; Wang H.; Ma Y.; Han D.; Niu L. Remarkable high-temperature ionic thermoelectric performance induced by graphene in gel thermocells. Energy Environ. Sci., 2024, 17(4), 1559-1569. doi:10.1039/d3ee03818ahttp://dx.doi.org/10.1039/d3ee03818a
Wang S.; Li Y.; Yu M.; Li Q.; Li H.; Wang Y.; Zhang J.; Zhu K.; Liu W. High-performance cryo-temperature ionic thermoelectric liquid cell developed through a eutectic solvent strategy. Nat. Commun., 2024, 15(1), 1172. doi:10.1038/s41467-024-45432-7http://dx.doi.org/10.1038/s41467-024-45432-7
Sun S.; Li M.; Shi X. L.; Chen Z. G. Advances in ionic thermoelectrics: from materials to devices. Adv. Energy Mater., 2023, 13(9), 2203692. doi:10.1002/aenm.202203692http://dx.doi.org/10.1002/aenm.202203692
Bai J. X.; Hu Y. J.; Guang T. L.; Zhu K. X.; Wang H. Y.; Cheng H. H.; Liu F.; Qu L. T. Vapor and heat dual-drive sustainable power for portable electronics in ambient environments. Energy Environ. Sci., 2022, 15(7), 3086-3096. doi:10.1039/d2ee00846ghttp://dx.doi.org/10.1039/d2ee00846g
Samsudin A. M.; Hacker V. Preparation and characterization of PVA/PDDA/nano-zirconia composite anion exchange membranes for fuel cells. Polymers, 2019, 11(9), 1399. doi:10.3390/polym11091399http://dx.doi.org/10.3390/polym11091399
Li P. D.; Su N.; Wang Z. Y.; Qiu J. S. A Ti3C2tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS Nano, 2021, 15(10), 16811-16818. doi:10.1021/acsnano.1c07186http://dx.doi.org/10.1021/acsnano.1c07186
Xu T.; Ding X. T.; Huang Y. X.; Shao C. X.; Song L.; Gao X.; Zhang Z. P.; Qu L. T. An efficient polymer moist-electric generator. Energy Environ. Sci., 2019, 12(3), 972-978. doi:10.1039/c9ee00252ahttp://dx.doi.org/10.1039/c9ee00252a
Meng Y. S.; Shu L.; Xie L. H.; Zhao M. J.; Liu T. X.; Li J. R. High performance nanofiltration in BUT-8(A)/PDDA mixed matrix membrane fabricated by spin-assisted layer-by-layer assembly. J. Taiwan Insti. Chem. Eng., 2020, 115, 331-338. doi:10.1016/j.jtice.2020.10.032http://dx.doi.org/10.1016/j.jtice.2020.10.032
Wang H.; Zhao D.; Khan Z. U.; Puzinas S.; Jonsson M. P.; Berggren M.; Crispin X. Ionic thermoelectric figure of merit for charging of supercapacitors. Adv. Electron. Mater., 2017, 3(4), 1700013. doi:10.1002/aelm.201700013http://dx.doi.org/10.1002/aelm.201700013
Abraham T. J.; MacFarlane D. R.; Pringle J. M. Seebeck coefficients in ionic liquids-prospects for thermo-electrochemical cells. Chem. Commun., 2011, 47(22), 6260-6262. doi:10.1039/c1cc11501dhttp://dx.doi.org/10.1039/c1cc11501d
Yang P.; Liu K.; Chen Q.; Mo X.; Zhou Y.; Li S.; Feng G.; Zhou J. Wearable thermocells based on gel electrolytes for the utilization of body heat. Angew. Chem. Int. Ed., 2016, 55(39), 12050-12053. doi:10.1002/anie.201606314http://dx.doi.org/10.1002/anie.201606314
Duan J.; Feng G.; Yu B.; Li J.; Chen M.; Yang P.; Feng J.; Liu K.; Zhou J. Aqueous thermogalvanic cells with a high seebeck coefficient for low-grade heat harvest. Nat. Commun., 2018, 9(1), 5146. doi:10.1038/s41467-018-07625-9http://dx.doi.org/10.1038/s41467-018-07625-9
Kim S. L.; Hsu J. H.; Yu C. Thermoelectric effects in solid-state polyelectrolytes. Org. Electron., 2018, 54231-54236. doi:10.1016/j.orgel.2017.12.021http://dx.doi.org/10.1016/j.orgel.2017.12.021
Chang W. B.; Evans C. M.; Popere B. C.; Russ B. M.; Liu J.; Newman J.; Segalman R. A. Harvesting waste heat in unipolar ion conducting polymers. ACS Macro Lett., 2016, 5(1), 94-98. doi:10.1021/acsmacrolett.5b00829http://dx.doi.org/10.1021/acsmacrolett.5b00829
Someya T.; Bao Z.; Malliaras G. G. The rise of plastic bioelectronics. Nature, 2016, 540(7633), 379. doi:10.1038/nature21004http://dx.doi.org/10.1038/nature21004
Kim S. L.; Lin H. T.; Yu C. Thermally chargeable solid-state supercapacitor. Adv. Engery Mater., 2016, 6(18), 1600546. doi:10.1002/aenm.201600546http://dx.doi.org/10.1002/aenm.201600546
Wang J.; Song Y.; Yu F.; Zeng Y.; Wu C.; Qin X.; Peng L.; Li Y.; Zhou Y.; Tao R.; Liu H.; Zhu H.; Sun M.; Xu W.; Zhang C.; Wang Z.; Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8%. Nature Commun., 2024, 15, 6704. doi:10.1038/s41467-024-51002-8http://dx.doi.org/10.1038/s41467-024-51002-8
Wang H.; Xie W.; Yu B.; Qi B.; Liu R.; Zhuang X.; Liu S.; Liu P.; Duan J.; Zhou J. Simultaneous solar steam and electricity generation from synergistic salinity-temperature gradient. Adv. Engery Mater., 2021, 11(18), 2100481. doi:10.1002/aenm.202100481http://dx.doi.org/10.1002/aenm.202100481
0
Views
208
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution