浏览全部资源
扫码关注微信
1.青岛科技大学高分子科学与工程学院 青岛 266042
2.怡维怡橡胶研究院 青岛 266045
Na Zhao, E-mail: zhaona@qust.edu.cn
Zhi-bo Li, E-mail: zbli@qust.edu.cn
Published:20 October 2024,
Published Online:07 June 2024,
Received:14 March 2024,
Accepted:16 April 2024
移动端阅览
杨言, 贾维杰, 段市委, 赵娜, 李志波. 有机碱催化苯基硅橡胶的合成与阻尼性能研究. 高分子学报, 2024, 55(10), 1290-1299
Yang, Y.; Jia, W. J.; Duan, S. W.; Zhao, N.; Li, Z. B. Study of the organobase catalyzed synthesis of diphenyl silicone rubbers and their damping property. Acta Polymerica Sinica, 2024, 55(10), 1290-1299
杨言, 贾维杰, 段市委, 赵娜, 李志波. 有机碱催化苯基硅橡胶的合成与阻尼性能研究. 高分子学报, 2024, 55(10), 1290-1299 DOI: 10.11777/j.issn1000-3304.2024.24079.
Yang, Y.; Jia, W. J.; Duan, S. W.; Zhao, N.; Li, Z. B. Study of the organobase catalyzed synthesis of diphenyl silicone rubbers and their damping property. Acta Polymerica Sinica, 2024, 55(10), 1290-1299 DOI: 10.11777/j.issn1000-3304.2024.24079.
采用有机环三磷腈碱(CTPB)为催化剂,通过阴离子开环聚合制备了不同苯基含量的高分子量二苯基硅橡胶生胶,添加白炭黑及其他阻尼填料制备成硅橡胶,研究了苯基含量、白炭黑用量以及不同填料对硅橡胶阻尼性能的影响. 结果表明,苯基含量提高,硅橡胶的阻尼损耗峰向高温移动,有效阻尼温域变宽. 添加50份白炭黑的40 mol%苯基硅橡胶,兼具良好的力学性能与阻尼性能,有效阻尼温域可达113 ℃ (-31~82 ℃). 采用炭黑K90和石墨烯片替代传统白炭黑填料,有效阻尼温域可进一步拓宽至127 ℃ (-27~100 ℃)和133 ℃ (-33~100 ℃).
Diphenyl silicone raw rubbers were efficiently prepared by anionic ring-opening copolymerization of cyclosiloxanes using CTPB as catalyst. The vulcanized silicone rubbers with different diphenylsiloxane contents were then prepared for studies of damping and other properties. The results showed that the mechanical properties of silicone rubbers first increased and then decreased with the diphenylsiloxane contents increasing from 5 mol% to 50 mol%. Accordingly
the damping loss peak moved to high temperature when the glass transition temperature increased
affording the widened effective damping temperature range. Among which
the silicone rubber with 40 mol% diphenylsiloxane and 50 phr silica exhibited best balance in mechanical and damping properties
with tensile strength of 7.0 MPa and elongation at break of 376%. The effective damping temperature range of this silicone rubber reached 113 ℃ (-31 ℃ to 82 ℃) with the maximum loss peak (tan
δ
max
) of 0.7. In addition
replacing the traditional silica filler with carbon black K90 and graphene sheet further enhanced damping performance
affording tan
δ
max
value of 1.2 and 0.7 and broad effective damping temperature range of 127 ℃ (-27 ℃ to 100 ℃) and 133 ℃ (-33 ℃ to 100 ℃)
respectively. This paper provided a novel method for preparing high damping silicone rubbers with wide temperature range
which have great potential for the industrialized application.
苯基硅橡胶硅橡胶阻尼性能有机催化开环聚合
Phenyl silicone rubberSilicone rubberDampingOrganocatalysisRing-opening polymerization
魏思奇, 余双舰, 吴思武, 唐征海, 郭宝春, 张立群. 基于功能性橡胶颗粒集成的宽温域橡胶阻尼材料. 高分子学报, 2024, 55(3), 338-348.
Sun T. L.; Gong X. L.; Jiang W. Q.; Li J. F.; Xu Z. B.; Li W. H. Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber. Polym. Test, 2008, 27(4), 520-526. doi:10.1016/j.polymertesting.2008.02.008http://dx.doi.org/10.1016/j.polymertesting.2008.02.008
Prasertsri S.; Rattanasom N. Mechanical and damping properties of silica/natural rubber composites prepared from latex system. Polym. Test, 2011, 30(5), 515-526. doi:10.1016/j.polymertesting.2011.05.006http://dx.doi.org/10.1016/j.polymertesting.2011.05.006
Liu C.; Fan J.; Chen Y. Design of regulable chlorobutyl rubber damping materials with high-damping value for a wide temperature range. Polym. Test, 2019, 79, 106003. doi:10.1016/j.polymertesting.2019.106003http://dx.doi.org/10.1016/j.polymertesting.2019.106003
Soleimanian S.; Petrone G.; Franco F.; De Rosa S.; Kołakowski P. Semi-active vibro-acoustic control of vehicle transmission systems using a metal rubber-based isolator. Appl. Acoust., 2024, 217, 109861. doi:10.1016/j.apacoust.2024.109861http://dx.doi.org/10.1016/j.apacoust.2024.109861
唐征海, 郭宝春, 张立群, 贾德民. 石墨烯/橡胶纳米复合材料. 高分子学报, 2014, (7), 865-877. doi:10.11777/j.issn1000-3304.2014.14083http://dx.doi.org/10.11777/j.issn1000-3304.2014.14083
Xia S.; Chen Y.; Tian J.; Shi J.; Geng C.; Zou H.; Liang M.; Li Z. Superior low-temperature reversible adhesion based on bio-inspired microfibrillar adhesives fabricated by phenyl containing polydimethylsiloxane elastomers. Adv. Funct. Mater., 2021, 31(26), 2101143. doi:10.1002/adfm.202101143http://dx.doi.org/10.1002/adfm.202101143
Zhu Q.; Wang Z.; Zeng H.; Yang T.; Wang X. Effects of graphene on various properties and applications of silicone rubber and silicone resin. Compos. Part A: Appl. Sci. Manuf., 2021, 142, 106240. doi:10.1016/j.compositesa.2020.106240http://dx.doi.org/10.1016/j.compositesa.2020.106240
Liu Z.; Shi J.; Zhao N.; Li Z. Fast synthesis of high molecular weights polydiethylsiloxanes and random poly(dimethylsiloxane-co-diethylsiloxane) copolysiloxanes via cyclic trimeric phosphazene base catalyzed ring-opening (co)polymerization. Eur. Polym. J., 2022, 173, 111280. doi:10.1016/j.eurpolymj.2022.111280http://dx.doi.org/10.1016/j.eurpolymj.2022.111280
Shi J.; Liu Z.; Zhao N.; Liu S.; Li Z. Controlled ring-opening polymerization of hexamethylcyclotrisiloxane catalyzed by trisphosphazene organobase to well-defined poly(dimethylsiloxane)s. Macromolecules, 2022, 55(7), 2844-2853. doi:10.1021/acs.macromol.1c02654http://dx.doi.org/10.1021/acs.macromol.1c02654
Rius-Bartra J. M.; Ferrer-Serrano N.; Agulló N.; Borrós S. High-consistency silicone rubber with reduced young's modulus. An industrial option to dielectric silicone rubber. J. Appl. Polym. Sci., 2023, 140(37), e54405. doi:10.1002/app.54405http://dx.doi.org/10.1002/app.54405
Fradkin D. G.; Foster J. N.; Sperling L. H.; Thomas D. A. A quantitative determination of the damping behavior of acrylic based interpenetrating polymer networks. Rubber Chem. Technol., 1986, 59(2), 255-262. doi:10.5254/1.3538198http://dx.doi.org/10.5254/1.3538198
Zlatanic A.; Radojcic D.; Wan X. M.; Messman J. M.; Dvornic P. R. Suppression of crystallization in polydimethylsiloxanes and chain branching in their phenyl-containing copolymers. Macromolecules, 2017, 50(9), 3532-3543. doi:10.1021/acs.macromol.7b00474http://dx.doi.org/10.1021/acs.macromol.7b00474
Shen D.; Yuan L.; Liang G.; Gu A.; Guan Q. Thermally resistant photocrosslinked damping poly(phenylene oxide)-fluorosilicone rubber films with broad and high effective damping temperatures. J. Appl. Polym. Sci., 2019, 136(12), 47231. doi:10.1002/app.47231http://dx.doi.org/10.1002/app.47231
Wang Y.; Cao R.; Wang M.; Liu X.; Zhao X.; Lu Y.; Feng A.; Zhang L. Design and synthesis of phenyl silicone rubber with functional epoxy groups through anionic copolymerization and subsequent epoxidation. Polymer, 2020, 186, 122077. doi:10.1016/j.polymer.2019.122077http://dx.doi.org/10.1016/j.polymer.2019.122077
Zhu L.; Zhao S.; Zhang C.; Cheng X.; Hao J.; Shao X.; Zhou C. Effects of chain structure on damping property and local dynamics of phenyl silicone rubber: insights from experiment and molecular simulation. Polym. Test., 2021, 93, 106885. doi:10.1016/j.polymertesting.2020.106885http://dx.doi.org/10.1016/j.polymertesting.2020.106885
Cui H.; Jing Q.; Li D.; Zhuang T.; Gao Y.; Ran X. Study on the high-temperature damping properties of silicone rubber modified by boron-terminated polysiloxane. J. Appl. Polym. Sci., 2023, 140(1), e53262. doi:10.1002/app.53262http://dx.doi.org/10.1002/app.53262
Ma X.; Luo C.; Zeng H.; Peng Y.; Zhao L.; Zhang F. Effect of polydiborosiloxane on the mechanical properties of silicone rubber foam with dual network structure. Polym. Eng. Sci., 2024, 10.1002/pen.26663. doi:10.1002/pen.26663http://dx.doi.org/10.1002/pen.26663
Zhang C.; Pal K.; Byeon J. U.; Han S. M.; Kim J. K. A study on mechanical and thermal properties of silicone rubber/EPDM damping materials. J. Appl. Polym. Sci., 2011, 119(5), 2737-2741. doi:10.1002/app.31697http://dx.doi.org/10.1002/app.31697
Liu B. Z.; Gao X. Y.; Zhao Y. F.; Dai L. N.; Xie Z. M.; Zhang Z. J. Prospect of 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide-based oligosiloxane in the preparation of high damping methyl phenyl vinyl silicone rubbers with broad temperature range. J. Mater. Sci., 2017, 52(22), 13307-13317.
Huang B.; Dai L.; Chen Z.; Zhao Y.; Gao X.; Wang Q.; Xie Z.; Zhang Z. Role of in-situ polymethyl-methacrylate in addition type silicone rubber with specific reference to adhesion and damping properties. J. Appl. Polym. Sci., 2020, 138(16), e50252. doi:10.1002/app.50252http://dx.doi.org/10.1002/app.50252
Zygo M.; Lipinska M.; Lu Z.; Ilcíková M.; Bockstaller M. R.; Mosnacek J.; Pietrasik J. New type of montmorillonite compatibilizers and their influence on viscoelastic properties of ethylene propylene diene and methyl vinyl silicone rubbers blends. Appl. Clay Sci., 2019, 183, 105359. doi:10.1016/j.clay.2019.105359http://dx.doi.org/10.1016/j.clay.2019.105359
Zhu L.; Chen X.; Shi R.; Zhang H.; Han R.; Cheng X.; Zhou C. Tetraphenylphenyl-modified damping additives for silicone rubber: experimental and molecular simulation investigation. Mater. Des., 2021, 202, 109551. doi:10.1016/j.matdes.2021.109551http://dx.doi.org/10.1016/j.matdes.2021.109551
Wang J.; Deng Q.; He Y.; Feng Y.; Yang Y. Phase structures, loss storage, damping, noise absorption, and mechanical properties of nano-graphite/lead zirconium titanate/room-temperature vulcanized silicone rubber composites. J. Mater. Eng. Perform., 2022, 32(5), 2280-2287. doi:10.1007/s11665-022-07264-8http://dx.doi.org/10.1007/s11665-022-07264-8
Huang L.; Yu F.; Liu Y.; Lu A.; Song Z.; Liu W.; Xiong Y.; He H.; Li S.; Zhao X.; Cui S.; Zhu C. Structural analyses of the bound rubber in silica-filled silicone rubber nanocomposites reveal mechanisms of filler-rubber interaction. Compos. Sci. Technol., 2023, 233, 109905. doi:10.1016/j.compscitech.2022.109905http://dx.doi.org/10.1016/j.compscitech.2022.109905
Zhiying R.; Jinming L.; Honglin Q.; Hongbai B.; Guibin T.; Shuncong Z. Research on mechanical properties of metal entangled structure-silicone rubber composite vibration damping materials. Polym. Compos., 2023, 44(3), 1967-1979. doi:10.1002/pc.27220http://dx.doi.org/10.1002/pc.27220
Lewis F. M. The science and technology of silicone rubber. Rubber Chem. Technol., 1962, 35(5), 1225-1227. doi:10.5254/1.3539992http://dx.doi.org/10.5254/1.3539992
Chen H.; Liu B.; Huang W.; Wu W. Gamma radiation induced effects of compressed silicone foam. Polym. Degrad. Stab., 2015, 114, 89-93. doi:10.1016/j.polymdegradstab.2015.02.007http://dx.doi.org/10.1016/j.polymdegradstab.2015.02.007
Yu F.; Lu A.; Lu J.; Wang Z.; Zhang Q.; Geng C.; Li Z. Effect of phenyl content, sample thickness and compression on damping performances of silicone rubber: a study by dynamic mechanical analysis and impact damping test. Polym. Test, 2019, 80, 106101. doi:10.1016/j.polymertesting.2019.106101http://dx.doi.org/10.1016/j.polymertesting.2019.106101
王一民, 王美豪, 赵秀英, 卢咏来, 张立群. 苯基硅橡胶复合材料的制备与性能研究. 北京化工大学学报(自然科学版), 2020, 47(2), 51-57. doi:10.13543/j.bhxbzr.2020.02.008http://dx.doi.org/10.13543/j.bhxbzr.2020.02.008
Zlatanic A.; Radojcic D.; Wan X.; Messman J. M.; Dvornic P. R. Monitoring of the course of the silanolate-initiated polymerization of cyclic siloxanes. A mechanism for the copolymerization of dimethyl and diphenyl monomers. Macromolecules, 2018, 51(3), 895-905. doi:10.1021/acs.macromol.7b02658http://dx.doi.org/10.1021/acs.macromol.7b02658
Zhao N.; Ren C.; Li H.; Li Y.; Liu S.; Li Z. Selective ring-opening polymerization of non-strained γ-butyrolactone catalyzed by a cyclic trimeric phosphazene base. Angew. Chem. Int. Ed., 2017, 129(42), 13167-13170. doi:10.1002/ange.201707122http://dx.doi.org/10.1002/ange.201707122
刘正阳, 时金凤, 赵娜, 李志波. 磷腈碱催化开环聚合制备含氟聚乙基硅氧烷. 功能高分子学报, 2022, 35(5), 417-424. doi:10.14133/j.cnki.1008-9357.20220105001http://dx.doi.org/10.14133/j.cnki.1008-9357.20220105001
Shi J.; Zhao N.; Xia S.; Liu S.; Li Z. Phosphazene superbase catalyzed ring-opening polymerization of cyclotetrasiloxane toward copolysiloxanes with high diphenyl siloxane content. Polym. Chem., 2019, 10(17), 2126-2133. doi:10.1039/c9py00247bhttp://dx.doi.org/10.1039/c9py00247b
Duan S.; Li Z.; Liu Y.; Zhao N.; Li Z. Preparation of robust diphenyl silicone elastomers with enhanced mechanical properties and thermal-aging resistances by using phosphazene as catalyst. Polymer, 2023, 272, 125855. doi:10.1016/j.polymer.2023.125855http://dx.doi.org/10.1016/j.polymer.2023.125855
补强, 何方方, 夏和生. 石墨烯/橡胶纳米复合材料研究进展. 高分子学报, 2014, (6), 715-723. doi:10.3724/SP.J.1105.2014.14017http://dx.doi.org/10.3724/SP.J.1105.2014.14017
0
Views
242
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution