浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
Dong-po Song, E-mail: dongpo.song@tju.edu.cn
Received:04 April 2024,
Accepted:2024-04-30,
Published Online:22 July 2024,
Published:20 November 2024
移动端阅览
黄凌峰, 宋东坡, 李悦生. 瓶刷嵌段共聚物聚甲基丙烯酸甲酯-b-聚环氧乙烷的合成与乳液界面自组装制备结构色颜料. 高分子学报, 2024, 55(11), 1504-1517
Huang, L. F.; Song, D. P.; Li, Y. S. Synthesis of poly(methyl methacrylate)-b-poly(ethylene oxide) bottlebrush block copolymers and their interfacial self-assembly toward structural colored pigments. Acta Polymerica Sinica, 2024, 55(11), 1504-1517
黄凌峰, 宋东坡, 李悦生. 瓶刷嵌段共聚物聚甲基丙烯酸甲酯-b-聚环氧乙烷的合成与乳液界面自组装制备结构色颜料. 高分子学报, 2024, 55(11), 1504-1517 DOI: 10.11777/j.issn1000-3304.2024.24101. CSTR: 32057.14.GFZXB.2024.7258.
Huang, L. F.; Song, D. P.; Li, Y. S. Synthesis of poly(methyl methacrylate)-b-poly(ethylene oxide) bottlebrush block copolymers and their interfacial self-assembly toward structural colored pigments. Acta Polymerica Sinica, 2024, 55(11), 1504-1517 DOI: 10.11777/j.issn1000-3304.2024.24101. CSTR: 32057.14.GFZXB.2024.7258.
针对车漆涂料等应用场景对结构色材料较高的耐候性
能要求,本工作利用有序自发乳化机制成功制备了聚甲基丙烯酸甲酯(PMMA)为骨架的有序多孔光子微球,展现了靓丽可调的结构色. 通过原子转移自由基聚合(ATRP)合成了窄分子量分布的PMMA,并利用巯烯反应高效除去了因歧化终止而产生的端末双键,进一步利用酯化反应合成了末端带有降冰片烯单元的PMMA大单体. 通过顺序开环易位聚合(ROMP)的合成方法,成功合成了(聚降冰片烯-
g
-聚甲基丙烯酸甲酯)-
b
-(聚降冰片烯-
g
-聚环氧乙烷) (PMMA-
b
-PEO)嵌段共聚物刷(BBCPs),数均分子量在174 kDa~359 kDa范围内可调,PDI维持在1.2以下. 在有序自发乳化制备结构色颜料的过程中,采用生物来源、安全环保的苯甲醚作为油相溶剂替代甲苯,使得材料制备过程更加安全环保,消除了产物中可能的有害残留,有利于规模制备与应用. PMMA材质的结构色颜料预期具有良好的耐候性能,有望用于车漆涂料等应用场景.
High environmental tolerance is a critical requirement for coating applications
particularly in automotive paint. This study successfully fabricated ordered porous photonic microspheres with poly(methyl methacrylate) (PMMA) as the framework using an organized spontaneous emulsification (OSE) mechanism
showing vibrant and adjustable structural colors. PMMA with narrow molecular weight distributions was synthesized
via
atom transfer radical polymerization (ATRP)
and the efficient removal of terminal double bonds resulting from disproportionation termination was achieved through thiol-ene click reactions. Additionally
PMMA macromonomers with norbornene units were
prepared through esterification reactions. By employing sequential ring-opening metathesis polymerization (ROMP)
(poly(norbornene-
g
-PMMA)-
b
-(poly(norbornene-
g
-PEO)) (PMMA-
b
-PEO) bottlebrush block copolymers (BBCPs) were successfully synthesized with tunable number-average molecular weights ranging from 174 kDa to 359 kDa and low PDIs below 1.2. Pore diameter is tunable in a large range from 178 nm to 287 nm
resulting in photonic bandgaps changing from 437 nm to 618 nm. Photonic pigments with various colors across the whole visible range are therefore obtained. In addition
bio-based and environmentally safe anisole was utilized as the oil phase instead of toluene during the OSE process
enhancing the safety and eco-friendliness of the material preparation process
eliminating potential harmful residues
and facilitating large-scale production and application. PMMA-based structural color pigments are anticipated to demonstrate outstanding weather resistance and offer significant potential for applications like automotive paint coatings.
Zhao Y. J. ; Xie Z. Y. ; Gu H. C. ; Zhu C. ; Gu Z. Z. Bio-inspired variable structural color materials . Chem. Soc. Rev. , 2012 , 41 ( 8 ), 3297 - 3317 . doi: 10.1039/c2cs15267c http://dx.doi.org/10.1039/c2cs15267c
王利彬 , 王京霞 , 宋延林 . 快速响应聚合物光子晶体研究进展 . 高分子学报 , 2012 , ( 10 ), 1118 - 1127 . doi: 10.3724/SP.J.1105.2012.12133 http://dx.doi.org/10.3724/SP.J.1105.2012.12133
Liberman-Martin A. L. ; Chu C. K. ; Grubbs R. H. Application of bottlebrush block copolymers as photonic crystals . Macromol. Rapid Commun. , 2017 , 38 ( 13 ), 1700058 . doi: 10.1002/marc.201700058 http://dx.doi.org/10.1002/marc.201700058
Goerlitzer E. S. A. ; Klupp Taylor R. N. ; Vogel N. Bioinspired photonic pigments from colloidal self-assembly . Adv. Mater. , 2018 , 30 ( 28 ), e 1706654 . doi: 10.1002/adma.201706654 http://dx.doi.org/10.1002/adma.201706654
Liu S. M. ; Yang Y. ; Zhang L. B. ; Xu J. P. ; Zhu J. T. Recent progress in responsive photonic crystals of block copolymers . J. Mater. Chem. C , 2020 , 8 ( 47 ), 16633 - 16647 . doi: 10.1039/d0tc04561f http://dx.doi.org/10.1039/d0tc04561f
Wang Z. ; Chan C. L. C. ; Zhao T. H. ; Parker R. M. ; Vignolini S. Recent advances in block copolymer self‐assembly for the fabrication of photonic films and pigments . Adv. Opt. Mater. , 2021 , 9 , 2100519 . doi: 10.1002/adom.202100519 http://dx.doi.org/10.1002/adom.202100519
Xu B. B. ; Feng C. ; Hu J. H. ; Shi P. ; Gu G. X. ; Wang L. ; Huang X. Y. Spin-casting polymer brush films for stimuli-responsive and anti-fouling surfaces . ACS Appl. Mater. Interfaces , 2016 , 8 ( 10 ), 6685 - 6692 . doi: 10.1021/acsami.5b12820 http://dx.doi.org/10.1021/acsami.5b12820
Xu B. B. ; Liu Y. J. ; Sun X. W. ; Hu J. H. ; Shi P. ; Huang X. Y. Semifluorinated synergistic nonfouling/fouling-release surface . ACS Appl. Mater. Interfaces , 2017 , 9 ( 19 ), 16517 - 16523 . doi: 10.1021/acsami.7b03258 http://dx.doi.org/10.1021/acsami.7b03258
Song D. P. ; Zhao T. H. ; Guidetti G. ; Vignolini S. ; Parker R. M. Hierarchical photonic pigments via the confined self-assembly of bottlebrush block copolymers . ACS Nano , 2019 , 13 ( 2 ), 1764 - 1771 .
Xu B. B. ; Feng C. ; Lv Y. S. ; Lin S. L. ; Lu G. L. ; Huang X. Y. Biomimetic asymmetric polymer brush coatings bearing fencelike conformation exhibit superior protection and antifouling performance . ACS Appl. Mater. Interfaces , 2020 , 12 ( 1 ), 1588 - 1596 . doi: 10.1021/acsami.9b19230 http://dx.doi.org/10.1021/acsami.9b19230
Liu Q. J. ; Li Y. L. ; Xu J. C. ; Lu H. F. ; Li Y. S. ; Song D. P. Self-assembled photonic microsensors with strong aggregation-induced emission for ultra-trace quantitative detection . ACS Nano , 2021 , 15 ( 3 ), 5534 - 5544 . doi: 10.1021/acsnano.1c00361 http://dx.doi.org/10.1021/acsnano.1c00361
Guo Q. L. ; Xue R. Z. ; Zhao J. ; Zhang Y. X. ; van de Kerkhof G. T. ; Zhang K. Y. ; Li Y. S. ; Vignolini S. ; Song D. P. Precise tailoring of polyester bottlebrush amphiphiles toward eco-friendly photonic pigments via interfacial self-assembly . Angew. Chem. Int. Ed. , 2022 , 61 ( 34 ), e 202206723 . doi: 10.1002/anie.202206723 http://dx.doi.org/10.1002/anie.202206723
He Q. L. ; Vijayamohanan H. ; Li J. ; Swager T. M. Multifunctional photonic Janus particles . J. Am. Chem. Soc. , 2022 , 144 ( 12 ), 5661 - 5667 . doi: 10.1021/jacs.2c01787 http://dx.doi.org/10.1021/jacs.2c01787
Kinoshita S. ; Yoshioka S. ; Miyazaki J. Physics of structural colors . Rep. Prog. Phys. , 2008 , 71 ( 7 ), 076401 . doi: 10.1088/0034-4885/71/7/076401 http://dx.doi.org/10.1088/0034-4885/71/7/076401
Shin J. J. ; Kim E. J. ; Ku K. H. ; Lee Y. J. ; Hawker C. J. ; Kim B. J. 100 th anniversary of macromolecular science viewpoint: Block copolymer particles: tuning shape, interfaces, and morphology . ACS Macro Lett. , 2020 , 9 ( 3 ), 306 - 317 . doi: 10.1021/acsmacrolett.0c00020 http://dx.doi.org/10.1021/acsmacrolett.0c00020
Norris D. J. ; Vlasov Y. A. Chemical approaches to three-dimensional semiconductor photonic crystals . Adv. Mater. , 2001 , 13 ( 6 ), 371 - 376 . doi: 10.1002/1521-4095(200103)13:6<371::aid-adma371>3.0.co;2-k http://dx.doi.org/10.1002/1521-4095(200103)13:6<371::aid-adma371>3.0.co;2-k
Cui J. C. ; Zhu W. ; Gao N. ; Li J. ; Yang H. W. ; Jiang Y. ; Seidel P. ; Ravoo B. J. ; Li G. T. Inverse opal spheres based on polyionic liquids as functional microspheres with tunable optical properties and molecular recognition capabilities . Angew. Chem. Int. Ed. , 2014 , 53 ( 15 ), 3844 - 3848 . doi: 10.1002/anie.201308959 http://dx.doi.org/10.1002/anie.201308959
von Freymann G. ; Kitaev V. ; Lotsch B. V. ; Ozin G. A. Bottom-up assembly of photonic crystals . Chem. Soc. Rev. , 2013 , 42 ( 7 ), 2528 - 2554 . doi: 10.1039/c2cs35309a http://dx.doi.org/10.1039/c2cs35309a
Koay N. ; Burgess I. B. ; Kay T. M. ; Nerger B. A. ; Miles-Rossouw M. ; Shirman T. ; Vu T. L. ; England G. ; Phillips K. R. ; Utech S. ; Vogel N. ; Kolle M. ; Aizenberg J. Hierarchical structural control of visual properties in self-assembled photonic-plasmonic pigments . Opt. Express , 2014 , 22 ( 23 ), 27750 - 27768 . doi: 10.1364/oe.22.027750 http://dx.doi.org/10.1364/oe.22.027750
王秋鸿 , 薛敏 , 王丰彦 , 阎泽群 , 薛飞 , 陈伟 , 齐丰莲 , 孟子晖 , 徐志斌 . 反蛋白石光子晶体凝胶的pH响应 . 高等学校化学学报 , 2014 , 35 ( 11 ), 2297 - 2302 . doi: 10.7503/cjcu20140456 http://dx.doi.org/10.7503/cjcu20140456
Fink Y. ; Urbas A. M. ; Bawendi M. G. ; Joannopoulos J. D. ; Thomas E. L. Block copolymers as photonic bandgap materials . J. Light. Technol. , 1999 , 17 ( 11 ), 1963 - 1969 . doi: 10.1109/50.802981 http://dx.doi.org/10.1109/50.802981
Kang Y. ; Walish J. J. ; Gorishnyy T. ; Thomas E. L. Broad-wavelength-range chemically tunable block-copolymer photonic gels . Nat. Mater. , 2007 , 6 ( 12 ), 957 - 960 . doi: 10.1038/nmat2032 http://dx.doi.org/10.1038/nmat2032
Ryu H. J. ; Fortner D. B. ; Lee S. ; Ferebee R. ; de Graef M. ; Misichronis K. ; Avgeropoulos A. ; Bockstaller M. R. Role of grain boundary defects during grain coarsening of lamellar block copolymers . Macromolecules , 2013 , 46 ( 1 ), 204 - 215 . doi: 10.1021/ma3015382 http://dx.doi.org/10.1021/ma3015382
Mapas J. K. D. ; Thomay T. ; Cartwright A. N. ; Ilavsky J. ; Rzayev J. Ultrahigh molecular weight linear block copolymers: rapid access by reversible-deactivation radical polymerization and self-assembly into large domain nanostructures . Macromolecules , 2016 , 49 ( 10 ), 3733 - 3738 . doi: 10.1021/acs.macromol.6b00863 http://dx.doi.org/10.1021/acs.macromol.6b00863
Kang H. S. ; Lee J. ; Cho S. M. ; Park T. H. ; Kim M. J. ; Park C. ; Lee S. W. ; Kim K. L. ; Ryu D. Y. ; Huh J. ; Thomas E. L. ; Park C. Printable and rewritable full block copolymer structural color . Adv. Mater. , 2017 , 29 ( 29 ), 1700084 . doi: 10.1002/adma.201770209 http://dx.doi.org/10.1002/adma.201770209
Park T. ; Eoh H. ; Jung Y. ; Lee G. ; Lee C. ; Kang H. S. ; Lee J. ; Kim K. ; Ryu D. ; Yu S. ; Park C. Thermo-adaptive block copolymer structural color electronics . Adv. Funct. Mater. , 2020 , 31 ( 11 ), 2008548 . doi: 10.1002/adfm.202170069 http://dx.doi.org/10.1002/adfm.202170069
Kim J. ; Lee Y. J. ; Ku K. H. ; Kim B. J. Effect of molecular structure of photoswitchable surfactant on light-responsive shape transition of block copolymer particles . Macromolecules , 2022 , 55 ( 18 ), 8355 - 8364 . doi: 10.1021/acs.macromol.2c01465 http://dx.doi.org/10.1021/acs.macromol.2c01465
Xia Y. ; Olsen B. D. ; Kornfield J. A. ; Grubbs R. H. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: The importance of side chain arrangement . J. Am. Chem. Soc. , 2009 , 131 ( 51 ), 18525 - 18532 . doi: 10.1021/ja908379q http://dx.doi.org/10.1021/ja908379q
Song D. P. ; Li C. ; Colella N. S. ; Xie W. T. ; Li S. K. ; Lu X. M. ; Gido S. ; Lee J. H. ; Watkins J. J. Large-volume self-organization of polymer/nanoparticle hybrids with millimeter-scale grain sizes using brush block copolymers . J. Am. Chem. Soc. , 2015 , 137 ( 39 ), 12510 - 12513 . doi: 10.1021/jacs.5b08632 http://dx.doi.org/10.1021/jacs.5b08632
Sveinbjörnsson B. R. ; Weitekamp R. A. ; Miyake G. M. ; Xia Y. ; Atwater H. A. ; Grubbs R. H. Rapid self-assembly of brush block copolymers to photonic crystals . Proc. Natl. Acad. Sci. USA , 2012 , 109 ( 36 ), 14332 - 14336 . doi: 10.1073/pnas.1213055109 http://dx.doi.org/10.1073/pnas.1213055109
Xu B. B. ; Feng C. ; Huang X. Y. A versatile platform for precise synthesis of asymmetric molecular brush in one shot . Nat. Commun. , 2017 , 8 ( 1 ), 333 . doi: 10.1038/s41467-017-00365-2 http://dx.doi.org/10.1038/s41467-017-00365-2
Feng C. ; Huang X. Y. Polymer brushes: efficient synthesis and applications . Acc. Chem. Res. , 2018 , 51 ( 9 ), 2314 - 2323 . doi: 10.1021/acs.accounts.8b00307 http://dx.doi.org/10.1021/acs.accounts.8b00307
Song D. P. ; Jacucci G. ; Dundar F. ; Naik A. ; Fei H. F. ; Vignolini S. ; Watkins J. J. Photonic resins: designing optical appearance via block copolymer self-assembly . Macromolecules , 2018 , 51 ( 6 ), 2395 - 2400 . doi: 10.1021/acs.macromol.7b02288 http://dx.doi.org/10.1021/acs.macromol.7b02288
Chen X. ; Yang X. ; Song D. P. ; Men Y. F. ; Li Y. S. Discovery and insights into organized spontaneous emulsification via interfacial self-assembly of amphiphilic bottlebrush block copolymers . Macromolecules , 2021 , 54 ( 8 ), 3668 - 3677 . doi: 10.1021/acs.macromol.1c00198 http://dx.doi.org/10.1021/acs.macromol.1c00198
Li Y. L. ; Chen X. ; Geng H. K. ; Dong Y. ; Wang B. ; Ma Z. ; Pan L. ; Ma G. Q. ; Song D. P. ; Li Y. S. Oxidation control of bottlebrush molecular conformation for producing libraries of photonic structures . Angew. Chem. Int. Ed. , 2021 , 60 ( 7 ), 3647 - 3653 . doi: 10.1002/anie.202011702 http://dx.doi.org/10.1002/anie.202011702
Dong Y. ; Ma Z. ; Song D. P. ; Ma G. Q. ; Li Y. S. Rapid responsive mechanochromic photonic pigments with alternating glassy-rubbery concentric lamellar nanostructures . ACS Nano , 2021 , 15 ( 5 ), 8770 - 8779 . doi: 10.1021/acsnano.1c01147 http://dx.doi.org/10.1021/acsnano.1c01147
Yi H. ; Li Y. S. ; Song D. P. Hierarchical assemblies of bottlebrush/homopolymer blends: tailoring phase interfacial curvature for tunable photonics . Chin. J. Chem. , 2023 , 41 , 1566 - 1574 . doi: 10.1002/cjoc.202300069 http://dx.doi.org/10.1002/cjoc.202300069
葛攀峰 , 张旸 , 任强 , 吴盾 , 方建波 , 宋艳 , 汪称意 , 李坚 . 丙烯酸酯三嵌段热塑性弹性体增韧有机玻璃 . 高分子材料科学与工程 , 2017 , 33 ( 11 ), 108 - 111 . doi: 10.16865/j.cnki.1000-7555.2017.11.018 http://dx.doi.org/10.16865/j.cnki.1000-7555.2017.11.018
Alaboalirat M. ; Vu C. ; Matson J. B. Radical-radical coupling effects in the direct-growth grafting-through synthesis of bottlebrush polymers using RAFT and ROMP . Polym. Chem. , 2022 , 13 ( 41 ), 5841 - 5851 . doi: 10.1039/d2py00794k http://dx.doi.org/10.1039/d2py00794k
陆赟涛 , 江力 , 蒋其民 , 黄文艳 , 蒋必彪 . 甲基丙烯酸甲酯自由基聚合歧化终止机理 . 高分子通报 , 2023 , 36 ( 2 ), 241 - 247 .
Jayachandran K. N. ; Takacs-Cox A. ; Brooks D. E. Synthesis and characterization of polymer brushes of poly( N , N -dimethylacrylamide) from polystyrene latex by aqueous atom transfer radical polymerization . Macromolecules , 2002 , 35 , 4247 - 4257 . doi: 10.1021/ma011651y http://dx.doi.org/10.1021/ma011651y
Nguyen H. V. T. ; Gallagher N. M. ; Vohidov F. ; Jiang Y. ; Kawamoto K. ; Zhang H. ; Park J. V. ; Huang Z. H. ; Ottaviani M. F. ; Rajca A. ; Johnson J. A. Scalable synthesis of multivalent macromonomers for ROMP . ACS Macro Lett. , 2018 , 7 ( 4 ), 472 - 476 . doi: 10.1021/acsmacrolett.8b00201 http://dx.doi.org/10.1021/acsmacrolett.8b00201
Tamura M. ; Kurokawa N. ; Hotta A. Compensation for orientation birefringence of PMMA by blending bottlebrush polymers composed of well-controlled graft chains . ACS Macro Lett. , 2022 , 11 ( 6 ), 799 - 804 . doi: 10.1021/acsmacrolett.2c00270 http://dx.doi.org/10.1021/acsmacrolett.2c00270
Ogbonna N. D. ; Dearman M. ; Cho C. T. ; Bharti B. ; Peters A. J. ; Lawrence J. Topologically precise and discrete bottlebrush polymers: synthesis, characterization, and structure-property relationships . JACS Au , 2022 , 2 ( 4 ), 898 - 905 . doi: 10.1021/jacsau.2c00010 http://dx.doi.org/10.1021/jacsau.2c00010
Ito H. ; Russell T. P. ; Wignall G. D. Interactions in mixtures of poly(ethylene oxide) and poly(methyl methacrylate) . Macromolecules , 1987 , 20 ( 9 ), 2213 - 2220 . doi: 10.1021/ma00175a028 http://dx.doi.org/10.1021/ma00175a028
Hu M. Q. ; Li X. D. ; Rzayev J. ; Russell T. P. Hydrolysis-induced self-assembly of high- χ -low-N bottlebrush copolymers . Macromolecules , 2021 , 54 ( 24 ), 11449 - 11458 . doi: 10.1021/acs.macromol.1c02061 http://dx.doi.org/10.1021/acs.macromol.1c02061
Taghvaei H. ; Kheirollahivash M. ; Ghasemi M. ; Rostami P. ; Gates B. C. ; Rahimpour M. R. Upgrading of anisole in a dielectric barrier discharge plasma reactor . Energy Fuels , 2014 , 28 ( 7 ), 4545 - 4553 . doi: 10.1021/ef500529r http://dx.doi.org/10.1021/ef500529r
李玉莲 , 宋东坡 , 李悦生 . 三嵌段共聚物刷诱导乳液自组装制备响应性多孔结构色微球 . 高分子学报 , 2021 , 52 ( 12 ), 1591 - 1602 . doi: 10.11777/j.issn1000-3304.2021.21146 http://dx.doi.org/10.11777/j.issn1000-3304.2021.21146
Magkiriadou S. ; Park J. G. ; Kim Y. S. ; Manoharan V. N. Absence of red structural color in photonic glasses, bird feathers, and certain beetles . Phys. Rev. E Stat. Nonlin. Soft Matter Phys. , 2014 , 90 ( 6 ), 062302 . doi: 10.1103/physreve.90.062302 http://dx.doi.org/10.1103/physreve.90.062302
Aguirre C. I. ; Reguera E. ; Stein A. Tunable colors in opals and inverse opal photonic crystals . Adv. Funct. Mater. , 2010 , 20 ( 16 ), 2565 - 2578 . doi: 10.1002/adfm.201000143 http://dx.doi.org/10.1002/adfm.201000143
0
Views
136
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution