浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学先进材料实验室 高分子科学系 上海 200433
Zheng-zhong Shao, E-mail: zzshao@fudan.edu.cn
Received:07 April 2024,
Accepted:2024-05-11,
Published Online:21 August 2024,
Published:20 November 2024
移动端阅览
李欣阳, 陈旎, 杨公雯, 邵正中. 抗冻型丝蛋白胶黏剂的设计与制备. 高分子学报, 2024, 55(11), 1463-1475
Li, X. Y.; Chen, N.; Yang, G. W.; Shao, Z. Z. Design and preparation of antifreeze silk-based bioadhesive. Acta Polymerica Sinica, 2024, 55(11), 1463-1475
李欣阳, 陈旎, 杨公雯, 邵正中. 抗冻型丝蛋白胶黏剂的设计与制备. 高分子学报, 2024, 55(11), 1463-1475 DOI: 10.11777/j.issn1000-3304.2024.24104. CSTR: 32057.14.GFZXB.2024.7259.
Li, X. Y.; Chen, N.; Yang, G. W.; Shao, Z. Z. Design and preparation of antifreeze silk-based bioadhesive. Acta Polymerica Sinica, 2024, 55(11), 1463-1475 DOI: 10.11777/j.issn1000-3304.2024.24104. CSTR: 32057.14.GFZXB.2024.7259.
为应对传统化学黏合剂因环境污染和潜在健康风险所带来的挑战,本研究在成功制备一款天然桑蚕丝蛋白和单宁酸复合胶黏剂的同时,很好地解决了传统黏合剂在低温环境下无法工作或性能不佳等问题. 通过在丝蛋白中引入与其有强相互作用的单宁酸,抑制了丝蛋白由无规卷曲构象向
β
-折叠构象的转变,进而保障了此复合胶黏剂的强黏附力. 在优化丝蛋白与单宁酸复合物配比的基础上,选用乙二醇和水二元溶剂体系,不仅有效提升了此生物基胶黏剂溶解性能和对各种基体黏结的普适性,并且显著降低了其冻结点,赋予了其相应的抗冻性能. 实验结果证实,此生物基胶黏剂在从-20 ℃到室温范围内均展现出超越传统商用化学黏合剂和其他生物基黏合剂的黏附能力. 因此,所研发的抗冻型丝蛋白生物基胶黏剂,以其环保性、生物降解性及在低温条件下出色的黏结性能,在包装、生物医疗及环境保护等领域中具有很好的应用前景.
Amidst growing demands for environmental protection and sustainable development
there is an urgent need within the industry for alternatives to traditional chemical adhesives
which are implicated in environmental contamination and health hazards. This study introduces an antifreeze silk fibroin bioadhesive designed to address the performance deficits of conventional bio-based adhesives in frozen conditions. The synthesis of this novel silk-derived adhesive employs a dual-stage process: initially crafting a silk fibroin-based adhesive matrix
followed by its integ
ration with an aqueous solvent system to formulate the bioadhesive. This approach enables the long-term storage of protein powders under ambient conditions
with the flexibility of formulation and application upon demand. Additionally
the adhesive strength is readily adjustable through the modulation of substrate concentration. The adhesive efficacy is principally reliant on the hydrogen bonding capability
with the quantity of hydrogen bond sites provided by silk fibroin critically influencing the protein adhesive's binding properties. Incorporation of tannic acid
known for its strong affinity with silk fibroin
prevents the transition of silk fibroin chains from a random coil to a
β
-sheet
thereby preserving the bioadhesive's strength. The study further refines the silk fibroin to tannic acid ratio and solvent composition
opting for a binary solvent system of ethylene glycol and water. This choice markedly enhances the solubility of the silk fibroin bioadhesive and significantly depresses its freezing point
augmenting its antifreeze capabilities and facilitating substrate bonding at low temperatures. The adhesive also exhibits exceptional low-temperature stability and adaptability to fluctuations in ambient temperature. Experimental validations demonstrate that this bioadhesive surpasses the adhesive performance of conventional commercial chemical adhesives and other bio-based adhesives over a broad temperature range from -24 °C to room temperature. Consequently
the antifreeze silk fibroin bioadhesive developed in this study
with its eco-friendliness
biodegradability
and exceptional adhesive performance under extreme low-temperature conditions
shows great potential for applications in key areas such as packaging
biomedical
and environmental protection.
Westerman C. R. ; McGill B. C. ; Wilker J. J. Sustainably sourced components to generate high-strength adhesives . Nature , 2023 , 621 ( 7978 ), 306 - 311 . doi: 10.1038/s41586-023-06335-7 http://dx.doi.org/10.1038/s41586-023-06335-7
Zhao Y. H. ; Wu Y. ; Wang L. ; Zhang M. M. ; Chen X. ; Liu M. J. ; Fan J. ; Liu J. Q. ; Zhou F. ; Wang Z. K. Bio-inspired reversible underwater adhesive . Nat. Commun. , 2017 , 8 ( 1 ), 2218 . doi: 10.1038/s41467-017-02387-2 http://dx.doi.org/10.1038/s41467-017-02387-2
Heinrich L. A. Future opportunities for bio-based adhesives-advantages beyond renewability . Green Chem. , 2019 , 21 ( 8 ), 1866 - 1888 . doi: 10.1039/c8gc03746a http://dx.doi.org/10.1039/c8gc03746a
张恒杰 , 柳坤锐 , 陈显春 , 顾志鹏 , 李乙文 . 光响应智能生物粘附材料的设计与应用 . 化学学报 , 2023 , 81 ( 12 ), 1739 - 1753 .
Eisen A. N. ; Bussa M. ; Röder H. A review of environmental assessments of biobased against petrochemical adhesives . J. Clean. Prod. , 2020 , 277 , 124277 . doi: 10.1016/j.jclepro.2020.124277 http://dx.doi.org/10.1016/j.jclepro.2020.124277
Finch C. A. Adhesion and adhesives technology—an introduction , 2 nd ed . AV Pocius. Carl Hanser Gardener Verlag , Munchen , 2002 . Polym. Int., 2004 , 53 ( 9 ), 1394 .
Zhang S. J. ; Chen X. X. ; Cui C. H. ; Ma L. ; Zhong Q. Y. ; Shen K. X. ; Yu J. ; Li Z. ; Wu Y. S. ; Zhang Q. ; Cheng Y. L. ; He L. ; Zhang Y. F. Strong, removable, and photoluminescent hyperbranched polyamide-amine hot melt adhesive . Chinese J. Polym. Sci. , 2021 , 39 ( 10 ), 1319 - 1327 . doi: 10.1007/s10118-021-2630-z http://dx.doi.org/10.1007/s10118-021-2630-z
Román J. ; Wilker J. J. Cooking chemistry transforms proteins into high-strength adhesives . J. Am. Chem. Soc. , 2019 , 141 ( 3 ), 1359 - 1365 . doi: 10.1021/jacs.8b12150 http://dx.doi.org/10.1021/jacs.8b12150
Pinnaratip R. ; Bhuiyan M. S. A. ; Meyers K. ; Rajachar R. M. ; Lee B. P. Multifunctional biomedical adhesives . Adv. Healthc. Mater. , 2019 , 8 ( 11 ), e 1801568 . doi: 10.1002/adhm.201801568 http://dx.doi.org/10.1002/adhm.201801568
Sun P. ; Mei S. ; Xu J. F. ; Zhang X. A bio-based supramolecular adhesive: ultra-high adhesion strengths at both ambient and cryogenic temperatures and excellent multi-reusability . Adv. Sci. , 2022 , 9 ( 28 ), e 2203182 . doi: 10.1002/advs.202203182 http://dx.doi.org/10.1002/advs.202203182
Ma C. ; Pang H. W. ; Shen Y. L. ; Ji W. J. ; Zhang S. F. Oyster-inspired organic-inorganic hybrid system to improve cold-pressing adhesion, flame retardancy, and mildew resistance of soybean meal adhesive . Compos. Part B Eng. , 2022 , 242 , 110049 . doi: 10.1016/j.compositesb.2022.110049 http://dx.doi.org/10.1016/j.compositesb.2022.110049
Zhao K. L. ; Liu Y. W. ; Ren Y. B. ; Li B. ; Li J. J. ; Wang F. ; Ma C. ; Ye F. F. ; Sun J. ; Zhang H. J. ; Liu K. Molecular engineered crown-ether-protein with strong adhesion over a wide temperature range from - 196 to 200 ℃. Angew. Chem. Int. Ed., 2022, 61 ( 33 ), 2207425 . doi: 10.1002/anie.202207425 http://dx.doi.org/10.1002/anie.202207425
Chen L. ; Sun L. Y. ; Yao J. R. ; Zhao B. J. ; Shao Z. Z. ; Chen X. Robust silk protein hydrogels made by a facile one-step method and their multiple applications . ACS Appl. Bio Mater. , 2022 , 5 ( 6 ), 3086 - 3094 . doi: 10.1021/acsabm.2c00354 http://dx.doi.org/10.1021/acsabm.2c00354
Rockwood D. N. ; Preda R. C. ; Yücel T. ; Wang X. Q. ; Lovett M. L. ; Kaplan D. L. Materials fabrication from Bombyx Mori silk fibroin . Nat. Protoc. , 2011 , 6 ( 10 ), 1612 - 1631 . doi: 10.1038/nprot.2011.379 http://dx.doi.org/10.1038/nprot.2011.379
Omenetto F. G. ; Kaplan D. L. New opportunities for an ancient material . Science , 2010 , 329 ( 5991 ), 528 - 531 . doi: 10.1126/science.1188936 http://dx.doi.org/10.1126/science.1188936
达高欢 , 马易群 , 林沁睿 , 邵正中 . 含有锂皂土/聚多巴胺复合纳米微粒的再生丝蛋白水凝胶 . 高分子学报 , 2023 , 54 ( 1 ), 95 - 105 .
Zhao B. H. ; Chen Q. Y. ; Da G. H. ; Yao J. R. ; Shao Z. Z. ; Chen X. A highly stretchable and anti-freezing silk-based conductive hydrogel for application as a self-adhesive and transparent ionotronic skin . J. Mater. Chem. C , 2021 , 9 ( 28 ), 8955 - 8965 . doi: 10.1039/d1tc01587g http://dx.doi.org/10.1039/d1tc01587g
Yue L. C. ; Gong M. ; Wang J. P. ; Ma S. Y. ; Chen Q. J. ; Kong X. Y. ; Lin X. ; Zhang L. ; Wu Z. ; Wang D. R. Hygroscopic MXene/protein nanocomposite fibers enabling highly stretchable, antifreezing, repairable, and degradable skin-like wearable electronics . ACS Mater. Lett. , 2023 , 5 ( 8 ), 2104 - 2113 . doi: 10.1021/acsmaterialslett.3c00397 http://dx.doi.org/10.1021/acsmaterialslett.3c00397
Chen N. ; Luo F. Y. ; Yang G. W. ; Yao J. R. ; Chen X. ; Shao Z. Z. Production of functional materials derived from regenerated silk fibroin by utilizing 3D printing and biomimetic enzyme-induced mineralization . Chinese J. Polym. Sci. , 2024 , 42 ( 3 ), 299 - 310 . doi: 10.1007/s10118-023-3059-3 http://dx.doi.org/10.1007/s10118-023-3059-3
Serban M. A. ; Panilaitis B. ; Kaplan D. L. Silk fibroin and polyethylene glycol-based biocompatible tissue adhesives . J. Biomed. Mater. Res. Part A , 2011 , 98 A( 4 ), 567 - 575 . doi: 10.1002/jbm.a.33149 http://dx.doi.org/10.1002/jbm.a.33149
Tang P. F. ; Han L. ; Li P. F. ; Jia Z. R. ; Wang K. F. ; Zhang H. P. ; Tan H. ; Guo T. L. ; Lu X. Mussel-inspired electroactive and antioxidative scaffolds with incorporation of polydopamine-reduced graphene oxide for enhancing skin wound healing . ACS Appl. Mater. Interfaces , 2019 , 11 ( 8 ), 7703 - 7714 . doi: 10.1021/acsami.8b18931 http://dx.doi.org/10.1021/acsami.8b18931
Zhang L. W. ; Liu M. ; Zhang Y. J. ; Pei R. J. Recent progress of highly adhesive hydrogels as wound dressings . Biomacromolecules , 2020 , 21 ( 10 ), 3966 - 3983 . doi: 10.1021/acs.biomac.0c01069 http://dx.doi.org/10.1021/acs.biomac.0c01069
Wang Q. ; Chen Q. ; Yang Y. H. ; Shao Z. Z. Effect of various dissolution systems on the molecular weight of regenerated silk fibroin . Biomacromolecules , 2013 , 14 ( 1 ), 285 - 289 . doi: 10.1021/bm301741q http://dx.doi.org/10.1021/bm301741q
Wang Z. L. ; Gu X. Q. ; Li B. ; Li J. J. ; Wang F. ; Sun J. ; Zhang H. J. ; Liu K. ; Guo W. S. Molecularly engineered protein glues with superior adhesion performance . Adv. Mater. , 2022 , 34 ( 41 ), e 2204590 . doi: 10.1002/adma.202204590 http://dx.doi.org/10.1002/adma.202204590
Dhawale P. V. ; Vineeth S. K. ; Gadhave R. V. ; Fatima , M JJ. ; Supekar M. V. ; Thakur V. K. ; Raghavan P. Tannin as a renewable raw material for adhesive applications: a review . Mater. Adv. , 2022 , 3 ( 8 ), 3365 - 3388 . doi: 10.1039/d1ma00841b http://dx.doi.org/10.1039/d1ma00841b
Bigham A. ; Rahimkhoei V. ; Abasian P. ; Delfi M. ; Naderi J. ; Ghomi M. ; Dabbagh Moghaddam F. ; Waqar T. ; Nuri Ertas Y. ; Sharifi S. ; Rabiee N. ; Ersoy S. ; Maleki A. ; Nazarzadeh Zare E. ; Sharifi E. ; Jabbari E. ; Makvandi P. ; Akbari A. Advances in tannic acid-incorporated biomaterials: infection treatment, regenerative medicine, cancer therapy, and biosensing . Chem. Eng. J. , 2022 , 432 , 134146 . doi: 10.1016/j.cej.2021.134146 http://dx.doi.org/10.1016/j.cej.2021.134146
Liu H. ; Qin S. M. ; Liu J. ; Zhou C. ; Zhu Y. Y. ; Yuan Y. ; Fu D. A. ; Lv Q. Y. ; Song Y. ; Zou M. Z. ; Wang Z. ; Wang L. Bio-inspired self-hydrophobized sericin adhesive with tough underwater adhesion enables wound healing and fluid leakage sealing . Adv. Funct. Mater. , 2022 , 32 ( 32 ), 2201108 . doi: 10.1002/adfm.202270183 http://dx.doi.org/10.1002/adfm.202270183
Chen X. ; Knight D. P. ; Shao Z. Z. ; Vollrath F. Regenerated Bombyx silk solutions studied with rheometry and FTIR . Polymer , 2001 , 42 ( 25 ), 9969 - 9974 . doi: 10.1016/s0032-3861(01)00541-9 http://dx.doi.org/10.1016/s0032-3861(01)00541-9
Chen N. ; Zhang X. B. ; Lyu J. Y. ; Zhao G. L. ; Gu K. ; Xia J. ; Chen Z. C. ; Shao Z. Z. Preparation of a novel regenerated silk fibroin-based hydrogel for extrusion bioprinting . Soft Matter , 2022 , 18 ( 38 ), 7360 - 7368 . doi: 10.1039/d2sm00984f http://dx.doi.org/10.1039/d2sm00984f
Krejchi M. T. ; Cooper S. J. ; Deguchi Y. ; Atkins E. D. T. ; Fournier M. J. ; Mason T. L. ; Tirrell D. A. Crystal structures of chain-folded antiparallel β -sheet assemblies from sequence-designed periodic polypeptides . Macromolecules , 1997 , 30 ( 17 ), 5012 - 5024 . doi: 10.1021/ma9614050 http://dx.doi.org/10.1021/ma9614050
Helminger M. ; Wu B. H. ; Kollmann T. ; Benke D. ; Schwahn D. ; Pipich V. ; Faivre D. ; Zahn D. ; Cölfen H. Synthesis and characterization of gelatin-based magnetic hydrogels . Adv. Funct. Mater. , 2014 , 24 ( 21 ), 3187 - 3196 . doi: 10.1002/adfm.201303547 http://dx.doi.org/10.1002/adfm.201303547
dos Santos Grasel F. ; Ferrão M. F. ; Wolf C. R. Ultraviolet spectroscopy and chemometrics for the identification of vegetable tannins . Ind. Crops Prod. , 2016 , 91 , 279 - 285 . doi: 10.1016/j.indcrop.2016.07.022 http://dx.doi.org/10.1016/j.indcrop.2016.07.022
Peng W. W. ; Han L. ; Gao Y. ; Gong Z. W. ; Lu T. ; Xu X. T. ; Xu M. ; Yamauchi Y. ; Pan L. K. Flexible organohydrogel ionic skin with Ultra-Low temperature freezing resistance and Ultra-Durable moisture retention . J. Colloid Interface Sci. , 2022 , 608 (Pt 1 ), 396 - 404 . doi: 10.1016/j.jcis.2021.09.125 http://dx.doi.org/10.1016/j.jcis.2021.09.125
Wei Y. X. ; Yao J. R. ; Shao Z. Z. ; Chen X. Water-resistant zein-based adhesives . ACS Sustainable Chem. Eng. , 2020 , 8 ( 20 ), 7668 - 7679 . doi: 10.1021/acssuschemeng.0c01179 http://dx.doi.org/10.1021/acssuschemeng.0c01179
Xu Y. T. ; Han Y. F. ; Li Y. ; Li J. C. ; Li J. Z. ; Gao Q. Preparation of a strong, mildew-resistant, and flame-retardant biomimetic multifunctional soy protein adhesive via the construction of an organic-inorganic hybrid multiple-bonding structure . Chem. Eng. J. , 2022 , 437 , 135437 . doi: 10.1016/j.cej.2022.135437 http://dx.doi.org/10.1016/j.cej.2022.135437
Wang X. C. ; Zhu J. B. ; Liu X. H. ; Zhang H. J. ; Zhu X. Novel gelatin-based eco-friendly adhesive with a hyperbranched cross-linked structure . Ind. Eng. Chem. Res. , 2020 , 59 ( 13 ), 5500 - 5511 . doi: 10.1021/acs.iecr.9b06822 http://dx.doi.org/10.1021/acs.iecr.9b06822
Scalbert A. Antimicrobial properties of tannins . Phytochemistry , 1991 , 30 ( 12 ), 3875 - 3883 . doi: 10.1016/0031-9422(91)83426-l http://dx.doi.org/10.1016/0031-9422(91)83426-l
0
Views
528
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution