浏览全部资源
扫码关注微信
1.青岛大学,材料科学与工程学院,能量转换与存储材料北京市重点实验室 北京 100875
2.(青岛大学,纺织服装学院 青岛 266071) (,能量转换与存储材料北京市重点实验室 北京 100875)
3.青岛大学,北京师范大学化学学院,能量转换与存储材料北京市重点实验室 北京 100875
Hao Lu, E-mail: luhao@qdu.edu.cn
Ya-hui Liu, E-mail: liuyh@qdu.edu.cn
Zhi-shan Bo, E-mail: zsbo@bnu.edu.cn
Published:20 October 2024,
Published Online:04 September 2024,
Received:27 April 2024,
Accepted:24 May 2024
移动端阅览
蒋晓林, 汪航, 马雪晴, 王逸凡, 路皓, 刘亚辉, 薄志山. 利用苯并二噻吩基聚合物给体和三芳胺基非稠环电子受体构筑简单高效有机太阳能电池. 高分子学报, 2024, 55(10), 1280-1289
Jiang, X. L.; Wang, H.; Ma, X. Q.; Wang, Y. F.; Lu, H.; Liu, Y. H.; Bo, Z. S. Using benzodithiophene-based polymer donors and triarylamine-based non-fused ring electron acceptors to construct simple yet efficient organic solar cells. Acta Polymerica Sinica, 2024, 55(10), 1280-1289
蒋晓林, 汪航, 马雪晴, 王逸凡, 路皓, 刘亚辉, 薄志山. 利用苯并二噻吩基聚合物给体和三芳胺基非稠环电子受体构筑简单高效有机太阳能电池. 高分子学报, 2024, 55(10), 1280-1289 DOI: 10.11777/j.issn1000-3304.2024.24116.
Jiang, X. L.; Wang, H.; Ma, X. Q.; Wang, Y. F.; Lu, H.; Liu, Y. H.; Bo, Z. S. Using benzodithiophene-based polymer donors and triarylamine-based non-fused ring electron acceptors to construct simple yet efficient organic solar cells. Acta Polymerica Sinica, 2024, 55(10), 1280-1289 DOI: 10.11777/j.issn1000-3304.2024.24116.
使用简单的聚合物给体P(Cl)和简单非稠环受体2BTh-2F,构建了低成本的高性能有机太阳能电池. 并选用固体添加剂二碘苯(DIB),对共混膜形貌进行精细调控.通过原子力显微镜、高分辨透射电镜以及原位紫外-可见光吸收光谱等手段,深入研究了活性层的成膜过程、共混膜相分离形貌等. 最终,基于P(Cl):2BTh-2F的器件获得0.861 V的开路电压(open circuit voltage,
V
OC
)、23.18 mA/cm的短路电流密度(short-circuit current density,
J
SC
)、71.21%的填充因子(fill factor,FF)以及14.21%的功率转换效率(power conversion efficiency
PCE).
We
utilized a low-cost polymer donor P(Cl) with a simple non-fused ring acceptor 2BTh-2F as the active layer material for device preparation. Through careful selection and optimization of additives
the microstructure and interfacial interactions of the device were significantly enhanced
resulting in an excellent power conversion efficiency (PCE) of 14.21%. The device achieves an open-circuit voltage (
V
OC
) as high as 0.861 V
a short-circuit current density (
J
SC
) of 23.18 mA/cm²
and a fill factor (FF) of 71.21%
which exceed the performance of the control without additives (12.51%). It is noteworthy that this efficiency value is one of the highest achieved to date based on the pairing of a simple polymer donor material with a simple non-fused ring acceptor material. Our work not only demonstrates the great potential of low-cost materials in the preparation of high-performance devices
but also proves that dual low-cost
high-efficiency devices with polymer donors and small-molecule acceptors can be realized by finely tuning the morphology of the blended film and deeply studying the film-forming process. This work opens up a new path for the future development of low-cost and high-performance photovoltaic devices
which is of great scientific significance and practical application value.
有机太阳能电池简单给体非稠环受体光电转化效率
Organic solar cellSimple donorNon-fused ring acceptorPhotovoltaic conversion efficiency
Zhao Y. P.; Li Z. Q.; Deger C.; Wang M. H.; Peric M.; Yin Y. F.; Meng D.; Yang W. X.; Wang X. Y.; Xing Q. Y.; Chang B.; Scott E. G.; Zhou Y. F.; Zhang E.; Zheng R.; Bian J. M.; Shi Y. T.; Yavuz I.; Wei K. H.; Houk K. N.; Yang Y. Achieving sustainability of greenhouses by integrating stable semi-transparent organic photovoltaics. Nat. Sustain., 2023, 6, 539-548. doi:10.1038/s41893-023-01071-2http://dx.doi.org/10.1038/s41893-023-01071-2
Guan S. T.; Li Y. K.; Yan K. R.; Fu W. F.; Zuo L. J.; Chen H. Z. Balancing the selective absorption and photon-to-electron conversion for semitransparent organic photovoltaics with 5.0% light-utilization efficiency. Adv. Mater., 2022, 34(41), e2205844. doi:10.1002/adma.202205844http://dx.doi.org/10.1002/adma.202205844
Xiong S. X.; Fukuda K.; Nakano K.; Lee S.; Sumi Y.; Takakuwa M.; Inoue D.; Hashizume D.; Du B. C.; Yokota T.; Zhou Y. H.; Tajima K.; Someya T. Waterproof and ultraflexible organic photovoltaics with improved interface adhesion. Nat. Commun., 2024, 15(1), 681. doi:10.1038/s41467-024-44878-zhttp://dx.doi.org/10.1038/s41467-024-44878-z
Wang Z. Y.; Bo Y. W.; Bai P. J.; Zhang S. C.; Li G. H.; Wan X. J.; Liu Y. S.; Ma R. J.; Chen Y. S. Self-sustaining personal all-day thermoregulatory clothing using only sunlight. Science, 2023, 382(6676), 1291-1296. doi:10.1126/science.adj3654http://dx.doi.org/10.1126/science.adj3654
黄飞, 薄志山, 耿延候, 王献红, 王利祥, 马於光, 侯剑辉, 胡文平, 裴坚, 董焕丽, 王树, 李振, 帅志刚, 李永舫, 曹镛. 光电高分子材料的研究进展. 高分子学报, 2019, 50(10), 988-1046. doi:10.11777/j.issn1000-3304.2019.19110http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
Lu H.; Liu W. L.; Ran G. L.; Liang Z. Z.; Li H. X.; Wei N.; Wu H. B.; Ma Z. F.; Liu Y. H.; Zhang W. K.; Xu X. J.; Bo Z. S. High-pressure fabrication of binary organic solar cells with high molecular weight D18 yields record 19.65% efficiency. Angew. Chem. Int. Ed, 2023, 62(50), e202314420. doi:10.1002/anie.202314420http://dx.doi.org/10.1002/anie.202314420
Lu H.; Liu W. L.; Ran G. L.; Li J. Y.; Li D. W.; Liu Y. H.; Xu X. J.; Zhang W. K.; Bo Z. S. High-efficiency binary and ternary organic solar cells based on novel nonfused-ring electron acceptors. Adv. Mater., 2024, 36(7), 2307292. doi:10.1002/adma.202307292http://dx.doi.org/10.1002/adma.202307292
Guan S. T.; Li Y. K.; Xu C.; Yin N.; Xu C. R.; Wang C. X.; Wang M. T.; Xu Y. X.; Chen Q.; Wang D. W.; Zuo L. J.; Chen H. Z. Self-assembled interlayer enables high-performance organic photovoltaics with power conversion efficiency exceeding 20%. Adv. Mater., 2024, 36(25), 2400342. doi:10.1002/adma.202400342http://dx.doi.org/10.1002/adma.202400342
Wang J. Q.; Wang Y. F.; Bi P. Q.; Chen Z. H.; Qiao J. W.; Li J. Y.; Wang W. X.; Zheng Z.; Zhang S. Q.; Hao X. T.; Hou J. H. Binary organic solar cells with 19.2% efficiency enabled by solid additive. Adv. Mater., 2023, 35(25), e2301583. doi:10.1002/adma.202301583http://dx.doi.org/10.1002/adma.202301583
Xu X. P.; Jing W. W.; Meng H. F.; Guo Y. Y.; Yu L. Y.; Li R. P.; Peng Q. Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells. Adv. Mater., 2023, 35(12), e2208997. doi:10.1002/adma.202208997http://dx.doi.org/10.1002/adma.202208997
Sun Y. D.; Wang L.; Guo C. H.; Xiao J. Y.; Liu C. H.; Chen C.; Xia W. Y.; Gan Z. R.; Cheng J. C.; Zhou J. P.; Chen Z. H.; Zhou J.; Liu D.; Wang T.; Li W. π-Extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency. J. Am. Chem. Soc., 2024, 146(17), 12011-12019. doi:10.1021/jacs.4c01503http://dx.doi.org/10.1021/jacs.4c01503
Guo C. H.; Sun Y. D.; Wang L.; Liu C. H.; Chen C.; Cheng J. C.; Xia W. Y.; Gan Z. R.; Zhou J.; Chen Z. H.; Zhou J. P.; Liu D.; Guo J. X.; Li W.; Wang T. Light-induced quinone conformation of polymer donors toward 19.9% efficiency organic solar cells. Energy Environ. Sci., 2024, 17(7), 2492-2499. doi:10.1039/d4ee00605dhttp://dx.doi.org/10.1039/d4ee00605d
Zhang M. J.; Guo X.; Ma W.; Ade H.; Hou J. H. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater., 2015, 27(31), 4655-4660. doi:10.1002/adma.201502110http://dx.doi.org/10.1002/adma.201502110
Liu Q. S.; Jiang Y. F.; Jin K.; Qin J. Q.; Xu J. G.; Li W. T.; Xiong J.; Liu J. F.; Xiao Z.; Sun K.; Yang S. F.; Zhang X. T.; Ding L. M. 18% Efficiency organic solar cells. Sci. Bull., 2020, 65(4), 272-275. doi:10.1016/j.scib.2020.01.001http://dx.doi.org/10.1016/j.scib.2020.01.001
Cui Y.; Xu Y.; Yao H. F.; Bi P. Q.; Hong L.; Zhang J. Q.; Zu Y. F.; Zhang T.; Qin J. Z.; Ren J. Z.; Chen Z. H.; He C.; Hao X. T.; Wei Z. X.; Hou J. H. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater., 2021, 33(41), 2102420. doi:10.1002/adma.202102420http://dx.doi.org/10.1002/adma.202102420
Yuan J.; Zhang Y. Q.; Zhou L. Y.; Zhang G. C.; Yip H. L.; Lau T. K.; Lu X. H.; Zhu C.; Peng H. J.; Johnson P. A.; Leclerc M.; Cao Y.; Ulanski J.; Li Y. F.; Zou Y. P. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3(4), 1140-1151. doi:10.1016/j.joule.2019.01.004http://dx.doi.org/10.1016/j.joule.2019.01.004
Jiang K.; Wei Q. Y.; Lai J. Y. L.; Peng Z. X.; Kim H. K.; Yuan J.; Ye L.; Ade H.; Zou Y. P.; Yan H. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule, 2019, 3(12), 3020-3033. doi:10.1016/j.joule.2019.09.010http://dx.doi.org/10.1016/j.joule.2019.09.010
Cui Y.; Yao H. F.; Zhang J. Q.; Xian K. H.; Zhang T.; Hong L.; Wang Y. M.; Xu Y.; Ma K. Q.; An C. B.; He C.; Wei Z. X.; Gao F.; Hou J. H. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater., 2020, 32(19), e1908205. doi:10.1002/adma.201908205http://dx.doi.org/10.1002/adma.201908205
Li C.; Zhou J. D.; Song J. L.; Xu J. Q.; Zhang H. T.; Zhang X. N.; Guo J.; Zhu L.; Wei D. H.; Han G. C.; Min J.; Zhang Y.; Xie Z. Q.; Yi Y. P.; Yan H.; Gao F.; Liu F.; Sun Y. M. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy, 2021, 6, 605-613. doi:10.1038/s41560-021-00820-xhttp://dx.doi.org/10.1038/s41560-021-00820-x
Liu K. R.; Jiang Y. Y.; Ran G. L.; Liu F.; Zhang W. K.; Zhu X. Z. 19.7% Efficiency binary organic solar cells achieved by selective core fluorination of nonfullerene electron acceptors. Joule, 2024, 8(3), 835-851. doi:10.1016/j.joule.2024.01.005http://dx.doi.org/10.1016/j.joule.2024.01.005
Sun C. K.; Pan F.; Bin H. J.; Zhang J. Q.; Xue L. W.; Qiu B. B.; Wei Z. X.; Zhang Z. G.; Li Y. F. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun., 2018, 9(1), 743. doi:10.1038/s41467-018-03207-xhttp://dx.doi.org/10.1038/s41467-018-03207-x
Shao Y. M.; Gao Y.; Sun R.; Zhang M. M.; Min J. A versatile and low-cost polymer donor based on 4-chlorothiazole for highly efficient polymer solar cells. Adv. Mater., 2023, 35(7), e2208750. doi:10.1002/adma.202208750http://dx.doi.org/10.1002/adma.202208750
Wang X. D.; Zeng R.; Lu H.; Ran G. L.; Zhang A. D.; Chen Y. N.; Liu Y. H.; Liu F.; Zhang W. K.; Tang Z.; Bo Z. S. A simple nonfused ring electron acceptor with a power conversion efficiency over 16%. Chin. J. Chem., 2023, 41(6), 665-671. doi:10.1002/cjoc.202200673http://dx.doi.org/10.1002/cjoc.202200673
Ma D. L.; Zhang Q. Q.; Li C. Z. Unsymmetrically chlorinated non-fused electron acceptor leads to high-efficiency and stable organic solar cells. Angew. Chem. Int. Ed, 2023, 62(5), e202214931. doi:10.1002/anie.202214931http://dx.doi.org/10.1002/anie.202214931
李大伟, 马雪晴, 崔新悦, 陈亚男, 魏楠, 言行, 李翠红, 刘玉强, 刘亚辉, 薄志山. 含炔键的聚合物给体材料设计合成及在有机太阳能电池中的性能研究. 高分子学报. 2024, 55(1), 48-57.
李韦伟. 给体/受体双缆型共轭聚合物材料及其单组分有机太阳能电池器件. 高分子学报, 2019, 50(3), 209-218. doi:10.11777/j.issn1000-3304.2019.18212http://dx.doi.org/10.11777/j.issn1000-3304.2019.18212
Jeon S. J.; Han Y. W.; Moon D. K. Chlorine effects of heterocyclic ring-based donor polymer for low-cost and high-performance nonfullerene polymer solar cells. Sol. RRL, 2019, 3(7), 1970071. doi:10.1002/solr.201970071http://dx.doi.org/10.1002/solr.201970071
Ren J. Z.; Zhang S. Q.; Bi P. Q.; Chen Z. H.; Zhang T.; Wang J. W.; Ma L. J.; Li J. Y.; Hou J. H. An over 16% efficiency organic solar cell enabled by a low-cost pyrazine-based polymer donor. J. Mater. Chem. A, 2022, 10(48), 25595-25601. doi:10.1039/d2ta07249ahttp://dx.doi.org/10.1039/d2ta07249a
Lu H.; Li D. W.; Ran G. L.; Chen Y. N.; Liu W. L.; Wang H.; Li S.; Wang X. D.; Zhang W. K.; Liu Y. H.; Xu X. J.; Bo Z. S. Designing high-performance wide bandgap polymer donors by the synergistic effect of introducing carboxylate and fluoro substituents. ACS Energy Lett., 2022, 7(11), 3927-3935. doi:10.1021/acsenergylett.2c02000http://dx.doi.org/10.1021/acsenergylett.2c02000
Wang H.; Lu H.; Chen Y. N.; Ran G. L.; Zhang A. D.; Li D. W.; Yu N.; Zhang Z.; Liu Y. H.; Xu X. J.; Zhang W. K.; Bao Q. Y.; Tang Z.; Bo Z. S. Chlorination enabling a low-cost benzodithiophene-based wide-bandgap donor polymer with an efficiency of over 17. Adv. Mater., 2022, 34(4), e2105483. doi:10.1002/adma.202105483http://dx.doi.org/10.1002/adma.202105483
Shen Q.; He C. L.; Li S. X.; Zuo L. J.; Shi M. M.; Chen H. Z. Mapping polymer donors with a non-fused acceptor possessing outward branched alkyl chains for efficient organic solar cells. J. Mater. Chem. A, 2023, 11(7), 3575-3583. doi:10.1039/d2ta09500ahttp://dx.doi.org/10.1039/d2ta09500a
Zheng X. M.; Liu W. L.; Wang H.; Man X. Y.; Ran G. L.; Yu X. D.; Lu H.; Bi Z. Z.; Liu Y. H.; Zhang A. D.; Ma W.; Xu X. J.; Tang Z.; Zhang W. K.; Bo Z. S. Simple non-fused ring electron acceptors with well-controlled terminal group stacking. Cell Rep. Phys. Sci., 2022, 3(12), 101169. doi:10.1016/j.xcrp.2022.101169http://dx.doi.org/10.1016/j.xcrp.2022.101169
Yu Z. P.; Liu Z. X.; Chen F. X.; Qin R.; Lau T. K.; Yin J. L.; Kong X. Q.; Lu X. H.; Shi M. M.; Li C. Z.; Chen H. Z. Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat. Commun., 2019, 10(1), 2152. doi:10.1038/s41467-019-10098-zhttp://dx.doi.org/10.1038/s41467-019-10098-z
Ma L. J.; Zhang S. Q.; Zhu J. C.; Wang J. W.; Ren J. Z.; Zhang J. Q.; Hou J. H. Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell. Nat. Commun., 2021, 12(1), 5093. doi:10.1038/s41467-021-25394-whttp://dx.doi.org/10.1038/s41467-021-25394-w
Wang X. D.; Lu H.; Liu Y. H.; Zhang A. D.; Yu N.; Wang H.; Li S.; Zhou Y. Y.; Xu X. J.; Tang Z.; Bo Z. S. Simple nonfused ring electron acceptors with 3D network packing structure boosting the efficiency of organic solar cells to 15.44%. Adv. Energy Mater., 2021, 11(45), 2102591. doi:10.1002/aenm.202102591http://dx.doi.org/10.1002/aenm.202102591
Yang N.; Cui Y.; Xiao Y.; Chen Z. H.; Zhang T.; Yu Y.; Ren J. Z.; Wang W. X.; Ma L. J.; Hou J. H. Completely non-fused low-cost acceptor enables organic photovoltaic cells with 17% efficiency. Angew. Chem. Int. Ed., 2024, 63(22), e202403753. doi:10.1002/anie.202403753http://dx.doi.org/10.1002/anie.202403753
Yang N.; Cui Y.; Zhang T.; An C. B.; Chen Z. H.; Xiao Y.; Yu Y.; Wang Y. F.; Hao X. T.; Hou J. H. Molecular design of fully nonfused acceptors for efficient organic photovoltaic cells. J. Am. Chem. Soc., 2024, 146(13), 9205-9215. doi:10.1021/jacs.4c00090http://dx.doi.org/10.1021/jacs.4c00090
Ren J. Z.; Bi P. Q.; Zhang J. Q.; Liu J.; Wang J. W.; Xu Y.; Wei Z. X.; Zhang S. Q.; Hou J. H. Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. Natl. Sci. Rev., 2021, 8(8), nwab031. doi:10.1093/nsr/nwab031http://dx.doi.org/10.1093/nsr/nwab031
0
Views
236
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution