浏览全部资源
扫码关注微信
南京大学化学与化工学院 化学与生物医学创新中心 配位化学国家重点实验室 南京 210023
Peng Zheng, E-mail: pengz@nju.edu.cn
Received:24 April 2024,
Accepted:2024-05-23,
Published Online:19 September 2024,
Published:20 November 2024
移动端阅览
许超, 郑斌, 李森淼, 郑鹏. 蛋白质解折叠的拉伸分子动力学模拟效率优化. 高分子学报, 2024, 55(11), 1608-1616
Xu, C.; Zheng, B.; Li, S. M.; Zheng, P. Optimizing efficiency for steered molecular dynamics simulations of protein unfolding. Acta Polymerica Sinica, 2024, 55(11), 1608-1616
许超, 郑斌, 李森淼, 郑鹏. 蛋白质解折叠的拉伸分子动力学模拟效率优化. 高分子学报, 2024, 55(11), 1608-1616 DOI: 10.11777/j.issn1000-3304.2024.24123. CSTR: 32057.14.GFZXB.2024.7266.
Xu, C.; Zheng, B.; Li, S. M.; Zheng, P. Optimizing efficiency for steered molecular dynamics simulations of protein unfolding. Acta Polymerica Sinica, 2024, 55(11), 1608-1616 DOI: 10.11777/j.issn1000-3304.2024.24123. CSTR: 32057.14.GFZXB.2024.7266.
拉伸分子动力学(SMD)模拟是揭示生物大分子在机械力作用下行为的一种重要计算方法,与蛋白质展开的单分子力谱实验技术相似. 尽管SMD模拟已经广泛应用,但由于模拟大分子系统的计算需求,研究范围受到限制. 最近计算机硬件的技术进步使得更广泛且经济的模拟成为可能. 本研究基于白细胞介素-6(IL-6)的解折叠过程,寻找使用GROMACS进行SMD模拟的最佳硬件配置. 研究表明,目前八核中央处理器(CPU)与一块图形处理器(GPU)的配置能提供最高效的性能. 此外,具有更高频率的CPU和更强FP32计算能力的GPU可以显著提升模拟效果. 此外,模拟体系原子数与模拟效率呈负相关,体系原子数小于1.2×10
7
时这种相关性较为明显. 本研究不仅明确了进行蛋白质展开的SMD模拟的最佳硬件设置,还将这种详细分子研究的可行性扩展到更广泛的研究中,为分子水平理解力学机制提供了一条更高效的途径,也为未来理解和研究更复杂的高分子在力学作用下的行为提供了重要基础.
Steered Molecular Dynamics (SMD) simulations represent an important computational approach for uncovering the mechanistic behaviors of bio-macromolecules under mechanical forces
closely resembling experimental techniques such as single-molecule force spectroscopy for protein unfolding. Despite its widespread application
the computational intensity of simulating large molecular systems has traditionally constrained the scope of such studies. Recent technological advancements in computer hardware have now enabled more extensive and economically viable simulations. This study investigates the unfolding of Interleukin-6 (IL-6) to determine the optimal hardware configurations for SMD simulations using GROMACS. Our findings highlight that a configuration of eight CPU cores to one GPU yields the most efficient performance. Moreover
CPUs with higher clock speeds and GPUs with greater full precise float 32 calculation ability directly enhance simulation outcomes. We also examined the impact of atom count on simulation efficiency. Additionally
we identified the most suitable hardware for SMD simulation by analyzing the cost-effectiveness of the hardware involved in this article. Our research not only elucidates the optimal hardware setup for SMD simulations of protein unfolding but also extends the feasibility of such detailed molecular investigations to a broader research community
offering a pathway to more accessible and insightful mechanistic studies at the molecular level. This also provided an important foundation for understanding and studying the mechanical mechanisms of more complex polymer unfolding in the future.
Karplus M. ; McCammon J. A. Molecular dynamics simulations of biomolecules . Nat. Struct. Biol. , 2002 , 9 ( 9 ), 646 - 652 . doi: 10.1038/nsb0902-646 http://dx.doi.org/10.1038/nsb0902-646
Brooks C. L. ; MacKerell A. D. ; Post C. B. ; Nilsson L. Biomolecular dynamics in the 21 st century . Biochim. Biophys. Acta Gen. Subj. , 2024 , 1868 ( 2 ), 130534 . doi: 10.1016/j.bbagen.2023.130534 http://dx.doi.org/10.1016/j.bbagen.2023.130534
Levine Z. A. ; Venable R. M. ; Watson M. C. ; Lerner M. G. ; Shea J. E. ; Pastor R. W. ; Brown F. L. H. Determination of biomembrane bending moduli in fully atomistic simulations . J. Am. Chem. Soc. , 2014 , 136 ( 39 ), 13582 - 13585 . doi: 10.1021/ja507910r http://dx.doi.org/10.1021/ja507910r
Morriss-Andrews A. ; Shea J. E. Simulations of protein aggregation: insights from atomistic and coarse-grained models . J. Phys. Chem. Lett. , 2014 , 5 ( 11 ), 1899 - 1908 . doi: 10.1021/jz5006847 http://dx.doi.org/10.1021/jz5006847
Peris-Díaz M. D. ; Guráň R. ; Domene C. ; de los Ríos V. ; Zítka O. ; Adam V. ; Krężel A. An integrated mass spectrometry and molecular dynamics simulations approach reveals the spatial organization impact of metal-binding sites on the stability of metal-depleted metallothionein-2 species . J. Am. Chem. Soc. , 2021 , 143 , 16486 - 16501 . doi: 10.1021/jacs.1c05495 http://dx.doi.org/10.1021/jacs.1c05495
Xiao Y. L. ; Zheng B. ; Ding X. ; Zheng P. Probing nanomechanical interactions of SARS-CoV-2 variants Omicron and XBB with common surfaces . Chem. Commun. , 2023 , 59 ( 75 ), 11268 - 11271 . doi: 10.1039/d3cc02721j http://dx.doi.org/10.1039/d3cc02721j
Shaw D. E. ; Maragakis P. ; Lindorff-Larsen K. ; Piana S. ; Dror R. O. ; Eastwood M. P. ; Bank J. A. ; Jumper J. M. ; Salmon J. K. ; Shan Y. B. ; Wriggers W. Atomic-level characterization of the structural dynamics of proteins . Science , 2010 , 330 ( 6002 ), 341 - 346 . doi: 10.1126/science.1187409 http://dx.doi.org/10.1126/science.1187409
Kav B. ; Weikl T. R. ; Schneck E. Measuring pico-newton forces with lipid anchors as force sensors in molecular dynamics simulations . J. Phys. Chem. B , 2023 , 127 ( 18 ), 4081 - 4089 . doi: 10.1021/acs.jpcb.3c00063 http://dx.doi.org/10.1021/acs.jpcb.3c00063
Isralewitz B. ; Gao M. ; Schulten K. Steered molecular dynamics and mechanical functions of proteins . Curr. Opin. Struct. Biol. , 2001 , 11 ( 2 ), 224 - 230 . doi: 10.1016/s0959-440x(00)00194-9 http://dx.doi.org/10.1016/s0959-440x(00)00194-9
Gao M. ; Lu H. ; Schulten K. Unfolding of titin domains studied by molecular dynamics simulations . J. Muscle Res. Cell. Motil. , 2002 , 23 ( 5 ), 513 - 521 .
Bernardi R. C. ; Durner E. ; Schoeler C. ; Malinowska K. H. ; Carvalho B. G. ; Bayer E. A. ; Luthey-Schulten Z. ; Gaub H. E. ; Nash M. A. Mechanisms of nanonewton mechanostability in a protein complex revealed by molecular dynamics simulations and single-molecule force spectroscopy . J. Am. Chem. Soc. , 2019 , 141 ( 37 ), 14752 - 14763 . doi: 10.1021/jacs.9b06776 http://dx.doi.org/10.1021/jacs.9b06776
Zhang P. ; Wang D. ; Yang W. T. ; Marszalek P. E. Piecewise all-atom SMD simulations reveal key secondary structures in luciferase unfolding pathway . Biophys. J. , 2020 , 119 ( 11 ), 2251 - 2261 . doi: 10.1016/j.bpj.2020.10.023 http://dx.doi.org/10.1016/j.bpj.2020.10.023
He C. Z. ; Genchev G. Z. ; Lu H. ; Li H. B. Mechanically untying a protein slipknot: multiple pathways revealed by force spectroscopy and steered molecular dynamics simulations . J. Am. Chem. Soc. , 2012 , 134 ( 25 ), 10428 - 10435 . doi: 10.1021/ja3003205 http://dx.doi.org/10.1021/ja3003205
Tian F. ; Li G. Q. ; Zheng B. ; Liu Y. T. ; Shi S. C. ; Deng Y. B. ; Zheng P. Verification of sortase for protein conjugation by single-molecule force spectroscopy and molecular dynamics simulations . Chem. Commun. , 2020 , 56 ( 28 ), 3943 - 3946 . doi: 10.1039/d0cc00714e http://dx.doi.org/10.1039/d0cc00714e
Lu H. ; Schulten K. Steered molecular dynamics simulations of force-induced protein domain unfolding . Proteins Struct. Funct. Genet. , 1999 , 35 ( 4 ), 453 - 463 . doi: 10.1002/(sici)1097-0134(19990601)35:4<453::aid-prot9>3.3.co;2-d http://dx.doi.org/10.1002/(sici)1097-0134(19990601)35:4<453::aid-prot9>3.3.co;2-d
Gräter F. ; Shen J. H. ; Jiang H. L. ; Gautel M. ; Grubmüller H. Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations . Biophys. J. , 2005 , 88 ( 2 ), 790 - 804 . doi: 10.1529/biophysj.104.052423 http://dx.doi.org/10.1529/biophysj.104.052423
Götz A. W. ; Williamson M. J. ; Xu D. ; Poole D. ; Le Grand S. ; Walker R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs . 1 . Generalized Born. J. Chem. Theory Comput., 2012, 8 ( 5 ), 1542 - 1555 . doi: 10.1021/ct200909j http://dx.doi.org/10.1021/ct200909j
Phillips J. C. ; Braun R. ; Wang W. ; Gumbart J. ; Tajkhorshid E. ; Villa E. ; Chipot C. ; Skeel R. D. ; Kalé L. ; Schulten K. Scalable molecular dynamics with NAMD . J. Comput. Chem. , 2005 , 26 ( 16 ), 1781 - 1802 . doi: 10.1002/jcc.20289 http://dx.doi.org/10.1002/jcc.20289
Phillips J. C. ; Hardy D. J. ; Maia J. D. C. ; Stone J. E. ; Ribeiro J. V. ; Bernardi R. C. ; Buch R. ; Fiorin G. ; Hénin J. ; Jiang W. ; McGreevy R. ; Melo M. C. R. ; Radak B. K. ; Skeel R. D. ; Singharoy A. ; Wang Y. ; Roux B. ; Aksimentiev A. ; Luthey-Schulten Z. ; Kalé L. V. ; Schulten K. ; Chipot C. ; Tajkhorshid E. Scalable molecular dynamics on CPU and GPU architectures with NAMD . J. Chem. Phys. , 2020 , 153 ( 4 ), 044130 . doi: 10.1063/5.0014475 http://dx.doi.org/10.1063/5.0014475
Van Der Spoel D. ; Lindahl E. ; Hess B. ; Groenhof G. ; Mark A. E. ; Berendsen H. J. C. GROMACS: fast, flexible, and free . J. Comput. Chem. , 2005 , 26 ( 16 ), 1701 - 1718 . doi: 10.1002/jcc.20291 http://dx.doi.org/10.1002/jcc.20291
Abraham M. ; Murtola T. ; Schulz R. ; Páll S. ; Smith J. C. ; Hess B. ; Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers . SoftwareX , 2015 , 1 , 19 - 25 . doi: 10.1016/j.softx.2015.06.001 http://dx.doi.org/10.1016/j.softx.2015.06.001
Kutzner C. ; Páll S. ; Fechner M. ; Esztermann A. ; de Groot B. L. ; Grubmüller H. More bang for your buck: improved use of GPU nodes for GROMACS 2018 . J. Comput. Chem. , 2019 , 40 ( 27 ), 2418 - 2431 . doi: 10.1002/jcc.26011 http://dx.doi.org/10.1002/jcc.26011
Yamasaki K. ; Taga T. ; Hirata Y. ; Yawata H. ; Kawanishi Y. ; Seed B. ; Taniguchi T. ; Hirano T. ; Kishimoto T. Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor . Science , 1988 , 241 ( 4867 ), 825 - 828 . doi: 10.1126/science.3136546 http://dx.doi.org/10.1126/science.3136546
Lee J. M. ; Cheng X. ; Swails J. M. ; Yeom M. S. ; Eastman P. K. ; Lemkul J. A. ; Wei S. ; Buckner J. ; Jeong J. C. ; Qi Y. F. ; Jo S. ; Pande V. S. ; Case D. A. ; Brooks C. L. III, MacKerell, A. D. Jr, Klauda, J. B.; Im, W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field . J. Chem. Theory Comput. , 2016 , 12 ( 1 ), 405 - 413 . doi: 10.1021/acs.jctc.5b00935 http://dx.doi.org/10.1021/acs.jctc.5b00935
Kim M. ; Kim E. ; Lee S. ; Kim J. S. ; Lee S. New method for constant-NPT molecular dynamics . J. Phys. Chem. A , 2019 , 123 ( 8 ), 1689 - 1699 . doi: 10.1021/acs.jpca.8b09082 http://dx.doi.org/10.1021/acs.jpca.8b09082
Kishimoto, T. Interleukin-6: from basic science to medicine—40 years in immunology . Annu. Rev. Immunol. , 2005 , 23 , 1 - 21 . doi: 10.1146/annurev.immunol.23.021704.115806 http://dx.doi.org/10.1146/annurev.immunol.23.021704.115806
Rief M. ; Gautel M. ; Oesterhelt F. ; Fernandez J. M. ; Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM . Science , 1997 , 276 ( 5315 ), 1109 - 1112 . doi: 10.1126/science.276.5315.1109 http://dx.doi.org/10.1126/science.276.5315.1109
Shi S. C. ; Wang Z. Y. ; Deng Y. B. ; Tian F. ; Wu Q. S. ; Zheng P. Combination of click chemistry and enzymatic ligation for stable and efficient protein immobilization for single-molecule force spectroscopy . CCS Chem. , 2022 , 4 ( 2 ), 598 - 604 . doi: 10.31635/ccschem.021.202100779 http://dx.doi.org/10.31635/ccschem.021.202100779
Wang Z. Y. ; Zhao Z. X. ; Li G. Q. ; Zheng P. Single-molecule force spectroscopy reveals the dynamic HgS coordination site in the De novo -designed metalloprotein α 3 DIV . J. Phys. Chem. Lett. , 2022 , 5372 - 5378 . doi: 10.1021/acs.jpclett.2c01316 http://dx.doi.org/10.1021/acs.jpclett.2c01316
Wang Z. Y. ; Zhao Z. X. ; Yang Z. Y. ; Li G. Q. ; Zheng P. pH-dependent PdS 3 site in α 3 DIV revealed by single-molecule force spectroscopy . J. Phys. Chem. B, 2023, 127 ( 13 ), 2934 - 2940 . doi: 10.1021/acs.jpcb.3c00348 http://dx.doi.org/10.1021/acs.jpcb.3c00348
Zheng B. ; Xiao Y. L. ; Tong B. ; Mao Y. T. ; Ge R. ; Tian F. ; Dong X. C. ; Zheng P. S 373P mutation stabilizes the receptor-binding domain of the spike protein in omicron and promotes binding . JACS Au , 2023 , 3 ( 7 ), 1902 - 1910 . doi: 10.1021/jacsau.3c00142 http://dx.doi.org/10.1021/jacsau.3c00142
Amanusk C. S. The Stress Terminal UI: s-tui . 2017 Aug 4 , 2021 ; Available from: https://github.com/amanusk/s-tui .
Song Y. ; Feng W. ; Liu K. ; Yang P. ; Zhang W. K. ; Zhang X. Exploring the folding pattern of a polymer chain in a single crystal by combining single-molecule force spectroscopy and steered molecular dynamics simulations . Langmuir , 2013 , 29 ( 12 ), 3853 - 3857 . doi: 10.1021/la305157p http://dx.doi.org/10.1021/la305157p
Kumar N. ; Garg P. Probing the molecular b asis of cofactor affinity and conformational dynamics of Mycobacterium tuberculosis elongation factor Tu: an integrated approach employing steered molecular dynamics and umbrella sampling simulations . J. Phys. Chem. B , 2022 , 126 ( 7 ), 1447 - 1461 . doi: 10.1021/acs.jpcb.1c09438 http://dx.doi.org/10.1021/acs.jpcb.1c09438
Fang Y. J. ; Li Z. X. ; Yang E. L. ; Sha M. Y. ; Song S. L. Molecular dynamics simulation study on the occurrence of shale oil in hybrid nanopores . Molecules , 2024 , 29 ( 2 ), 312 . doi: 10.3390/molecules29020312 http://dx.doi.org/10.3390/molecules29020312
Shen W. H. ; Zhou T. ; Shi X. H. Enhanced sampling in molecular dynamics simulations and their latest applications—a review . Nano Res. , 2023 , 16 ( 12 ), 13474 - 13497 . doi: 10.1007/s12274-023-6311-9 http://dx.doi.org/10.1007/s12274-023-6311-9
LeBlanc M. A. ; Fink M. R. ; Perkins T. T. ; Sousa M. C. Type III secretion system effector proteins are mechanically labile . Proc. Natl. Acad. Sci. USA , 2021 , 118 ( 12 ), e 2019566118 . doi: 10.1073/pnas.2019566118 http://dx.doi.org/10.1073/pnas.2019566118
Lei H. ; Ma Q. ; Li W. F. ; Wen J. ; Ma H. B. ; Qin M. ; Wang W. ; Cao Y. An ester bond underlies the mechanical strength of a pathogen surface protein . Nat. Commun. , 2021 , 12 ( 1 ), 5082 . doi: 10.1038/s41467-021-25425-6 http://dx.doi.org/10.1038/s41467-021-25425-6
Zhang X. N. ; Kou X. L. ; Zhang W. ; Zhang W. K. Identification of the new type of G-quadruplex with multiple vacant sites in human telomeric DNA . CCS Chem. , 2022 , 4 ( 9 ), 3023 - 3035 . doi: 10.31635/ccschem.021.202101436 http://dx.doi.org/10.31635/ccschem.021.202101436
Song G. B. ; Tian F. ; Liu H. X. ; Li G. Q. ; Zheng P. Pioglitazone inhibits metal cluster transfer of mitoNEET by stabilizing the labile Fe-N bond revealed at single-bond level . J. Phys. Chem. Lett. , 2021 , 12 ( 15 ), 3860 - 3867 . doi: 10.1021/acs.jpclett.0c03852 http://dx.doi.org/10.1021/acs.jpclett.0c03852
Bao Y. ; Luo Z. L. ; Cui S. X. Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials . Chem. Soc. Rev. , 2020 , 49 ( 9 ), 2799 - 2827 . doi: 10.1039/c9cs00855a http://dx.doi.org/10.1039/c9cs00855a
Mickler M. ; Dima R. I. ; Dietz H. ; Hyeon C. ; Thirumalai D. ; Rief M. Revealing the bifurcation in the unfolding pathways of GFP by using single-molecule experiments and simulations . Proc. Natl. Acad. Sci. USA , 2007 , 104 ( 51 ), 20268 - 20273 . doi: 10.1073/pnas.0705458104 http://dx.doi.org/10.1073/pnas.0705458104
Rico F. ; González L. ; Casuso I. ; Puig-Vidal M. ; Scheuring S. High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations . Science , 2013 , 342 , 741 - 743 . doi: 10.1126/science.1239764 http://dx.doi.org/10.1126/science.1239764
Posch S. ; Aponte-Santamaria C. ; Schwarzl R. ; Karner A. ; Radtke M. ; Gräter F. ; Obser T. ; König G. ; Brehm M. ; Gruber H. ; R . Netz, R.; Baldauf, C.; Schneppenheim, R.; Tampé, R.; Hinterdorfer, P. Single molecule force spectroscopy data and BD- and MD simulations on the blood protein von Willebrand factor . Data in Brief , 2016 , 1080 - 1087 . doi: 10.1016/j.dib.2016.07.031 http://dx.doi.org/10.1016/j.dib.2016.07.031
De Sancho D. , Schonfelder J. , Best R. , Munoz V. , Perez-Jimenez R. Ultrafast protein folding under mechanical force: experiments and simulations . Febs Journal , 2017 , 284 , 35 - 35 .
Liu Y. T. ; Tian F. ; Shi S. C. ; Deng Y. B. ; Zheng P. Enzymatic protein-protein conjugation through internal site verified at the single-molecule level . J. Phys. Chem. Lett. , 2021 , 12 ( 44 ), 10914 - 10919 . doi: 10.1021/acs.jpclett.1c02767 http://dx.doi.org/10.1021/acs.jpclett.1c02767
Ravikumar Y. ; Koonyosying P. ; Srichairatanakool S. ; Ponpandian L. N. ; Kumaravelu J. ; Srichairatanakool S. In silico molecular docking and dynamics simulation analysis of potential histone lysine methyl transferase inhibitors for managing β -thalassemia . Molecules , 2023 , 28 ( 21 ), 7266 . doi: 10.3390/molecules28217266 http://dx.doi.org/10.3390/molecules28217266
0
Views
248
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution