浏览全部资源
扫码关注微信
华南理工大学 广东省高分子先进制造技术及装备重点实验室 微/纳成型与流变学研究室 广州 510640
Han-xiong Huang, E-mail: mmhuang@scut.edu.cn
Published:20 January 2025,
Published Online:22 November 2024,
Received:26 June 2024,
Accepted:2024-08-02
移动端阅览
闫茂昌, 黄汉雄. 热塑性聚氨酯基杂化纳米复合材料的导电和拉伸应变传感性能. 高分子学报, 2025, 56(1), 124-134
Yan, M. C.; Huang, H. X. Conductivity and stretchable strain sensing performances of thermoplastic polyurethane-based hybrid nanocomposites. Acta Polymerica Sinica, 2025, 56(1), 124-134
闫茂昌, 黄汉雄. 热塑性聚氨酯基杂化纳米复合材料的导电和拉伸应变传感性能. 高分子学报, 2025, 56(1), 124-134 DOI: 10.11777/j.issn1000-3304.2024.24186. CSTR: 32057.14.GFZXB.2024.7290.
Yan, M. C.; Huang, H. X. Conductivity and stretchable strain sensing performances of thermoplastic polyurethane-based hybrid nanocomposites. Acta Polymerica Sinica, 2025, 56(1), 124-134 DOI: 10.11777/j.issn1000-3304.2024.24186. CSTR: 32057.14.GFZXB.2024.7290.
采用湿法刻蚀MAX相的方法,制备了少层二维过渡金属碳化物(MXene)纳米片;采用溶液混合和模压成型制备不同碳纳米管(CNT)、MXene和杂化CNT/MXene含量的热塑性聚氨酯(TPU)基纳米复合材料. 结果表明,杂化CNT/MXene有效提高了纳米复合材料的导电性能,MXene含量从0.2 wt%增加至0.4 wt%使TPU/CNT (0.8 wt%)纳米复合材料的电导率提高5个数量级. 扫描电镜观测和流变性能测试结果表明,这归因于TPU内杂化CNT/MXene形成了良好的导电网络. 对具有较高导电率的4种TPU/CNT/MXene纳米复合材料(即CNT含量固定为0.8 wt%、MXene含量为0.4 wt%~1.0 wt%)的拉伸应变传感性能进行对比研究. 有意义的是,发现MXene含量为0.8 wt%的纳米复合材料呈现更高的应变传感性能,其应变因子最高为7.5. 该纳米复合材料在不同的循环拉伸/释放测试中表现良好的响应和恢复性能、较高的循环响应稳定性和重复性,且能准确检测手指弯曲、手腕弯曲和低头这些人体运动产生的电阻信号. 研究表明,采用杂化CNT/MXene并选择合适的含量,在聚合物基体内形成良好的导电网络,可明显提高纳米复合材料的导电和拉伸应变传感性能.
Few-layer two-dimensional transition metal carbide (MXene) nanosheets were successfully prepared by using wet etching MAX phase. Thermoplastic polyurethane (TPU)-based nanocomposites with different contents of carbon nanotubes (CNT)
MXene
and hybrid CNT/MXene were prepared by solution mixing and compression molding. It was demonstrated that the hybrid CNT/MXene effectively improves the conductivity of the nanocomposites. The conductivity of the TPU/CNT (0.8 wt%) nanocomposite is enhanced by five orders of magnitude as increasing the MXene content from 0.2 wt% to 0.4 wt%. This can be attributed to the development of good conductive network of the hybrid CNT/MXene in the TPU according to the results of scanning electron microscope observation and rheological tests. The stretchable strain sensing performances were comparatively investigated on four TPU/CNT/MXene nanocomposites with
higher conductivities (
i.e.
fixing the CNT content at 0.8 wt% and varying the MXene contents of 0.4 wt%-1.0 wt%). It was interestingly found that the nanocomposite with 0.8 wt% MXene exhibited the highest strain sensing performance with the highest gage factor of 7.5. This nanocomposite exhibits good response and recovery performance
higher cycle response stability and repeatability in different cyclic stretching/release tests
and can accurately monitor the resistance signals generated by the human movements
such as finger bending
wrist bending
and head lowering. The results demonstrate that the conductivity and stretchable strain sensing performance of the nanocomposites can be significantly improved through incorporating the hybrid CNT/MXene and choosing its suitable content to develop the conductive network in the nanocomposites.
热塑性聚氨酯基纳米复合材料二维过渡金属碳化物导电性能拉伸应变传感流变行为
Thermoplastic polyurethane-based nanocompositesTwo-dimensional transition metal carbideConductivityStretchable strain sensingRheological behavior
Yeole S. P.; Jadhav P. S.; Joshi G. M.Recent scenario of surfactants modified graphene and its derivatives-based polymer nanocomposites—Review. Macromol. Chem. Phys., 2023, 224, 2300122. doi:10.1002/macp.202300122http://dx.doi.org/10.1002/macp.202300122
Imtiaz S.; Siddiq M.; Kausar A.; Muntha S. T.; Ambreen J.; Bibi I.A review featuring fabrication, properties and applications of carbon nanotubes (CNTs) reinforced polymer and epoxy nanocomposites. Chinese J. Polym. Sci., 2018, 36(4), 445-461. doi:10.1007/s10118-018-2045-7http://dx.doi.org/10.1007/s10118-018-2045-7
Szeluga U.; Kumanek B.; Trzebicka B.Synergy in hybrid polymer/nanocarbon composites. A review. Compos. Part A Appl. Sci. Manuf., 2015, 73, 204-231. doi:10.1016/j.compositesa.2015.02.021http://dx.doi.org/10.1016/j.compositesa.2015.02.021
Ke K.; Yue L.; Shao H. Q.; Yang M. B.; Yang W.; Manas-Zloczower I.Boosting electrical and piezoresistive properties of polymer nanocomposites via hybrid carbon fillers: a review. Carbon, 2021, 173, 1020-1040. doi:10.1016/j.carbon.2020.11.070http://dx.doi.org/10.1016/j.carbon.2020.11.070
Liu H.; Gao J. C.; Huang W. J.; Dai K.; Zheng G. Q.; Liu C. T.; Shen C. Y.; Yan X. R.; Guo J.; Guo Z. H.Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale, 2016, 8(26), 12977-12989. doi:10.1039/c6nr02216bhttp://dx.doi.org/10.1039/c6nr02216b
Yu L. M.; Huang H. X.Temperature and shear dependence of rheological behavior for thermoplastic polyurethane nanocomposites with carbon nanofillers. Polymer, 2022, 247, 124791. doi:10.1016/j.polymer.2022.124791http://dx.doi.org/10.1016/j.polymer.2022.124791
Aranburu N.; Otaegi I.; Guerrica-Echevarria G.Mechanical, electrical, and adhesive synergies in melt-processed hybrid bio-based TPU nanocomposites. Polym. Test., 2023, 124, 108068. doi:10.1016/j.polymertesting.2023.108068http://dx.doi.org/10.1016/j.polymertesting.2023.108068
Wang Y. X.; Yue Y.; Cheng F.; Cheng Y. F.; Ge B. H.; Liu N. S.; Gao Y. H.Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano, 2022, 16(2), 1734-1758. doi:10.1021/acsnano.1c09925http://dx.doi.org/10.1021/acsnano.1c09925
Sheng X. X.; Zhao Y. F.; Zhang L.; Lu X.Properties of two-dimensional Ti3C2 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt blending. Compos. Sci. Technol., 2019, 181, 107710. doi:10.1016/j.compscitech.2019.107710http://dx.doi.org/10.1016/j.compscitech.2019.107710
Gao Q. S.; Feng M. J.; Li E.; Liu C. T.; Shen C. Y.; Liu X. H.Mechanical, thermal, and rheological properties of Ti3C2Tx MXene/ Thermoplastic polyurethane nanocomposites. Macromol. Mater. Eng., 2020, 305, 2000343. doi:10.1002/mame.202000343http://dx.doi.org/10.1002/mame.202000343
Luo Y.; Xie Y. H.; Geng W.; Dai G. F.; Sheng X. X.; Xie D. L.; Wu H.; Mei Y.Fabrication of thermoplastic polyurethane with functionalized MXene towards high mechanical strength, flame-retardant, and smoke suppression properties. J. Colloid Interface Sci., 2022, 606, 223-235. doi:10.1016/j.jcis.2021.08.025http://dx.doi.org/10.1016/j.jcis.2021.08.025
Liu C.; Shi Y. Q.; Ye H.; He J. H.; Lin Y. X.; Li Z.; Lu J. H.; Tang Y. L.; Wang Y. Z.; Chen L.Functionalizing MXene with hypophosphite for highly fire safe thermoplastic polyurethane composites. Compos. Part A Appl. Sci. Manuf., 2023, 168, 107486. doi:10.1016/j.compositesa.2023.107486http://dx.doi.org/10.1016/j.compositesa.2023.107486
陈梦杰, 李志健, 周宏伟, 刘汉斌. 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器. 高分子学报, 2023, 54(11), 1740-1752.
范强, 苗锦雷, 刘旭华, 左杏薇, 张文枭, 田明伟, 朱士凤, 曲丽君. 基于仿生MXene纤维导电网络的柔性透明电极及电容传感器. 高分子学报, 2022, 53(6), 617-625. doi:10.11777/j.issn1000-3304.2021.21324http://dx.doi.org/10.11777/j.issn1000-3304.2021.21324
Dong H.; Sun J. C.; Liu X. M.; Jiang X. D.; Lu S. W.Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection. ACS Appl. Mater. Interfaces, 2022, 14(13), 15504-15516. doi:10.1021/acsami.1c23567http://dx.doi.org/10.1021/acsami.1c23567
Wang H. C.; Zhou R. C.; Li D. H.; Zhang L. R.; Ren G. Z.; Wang L.; Liu J. H.; Wang D. Y.; Tang Z. H.; Lu G.; Sun G. Z.; Yu H. D.; Huang W.High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano, 2021, 15(6), 9690-9700. doi:10.1021/acsnano.1c00259http://dx.doi.org/10.1021/acsnano.1c00259
Su F. C.; Huang H. X.Flexible switching pressure sensors with fast response and less bending-sensitive performance applied to pain-perception-mimetic gloves. ACS Appl. Mater. Interfaces, 2023, 15(48), 56328-56336. doi:10.1021/acsami.3c13930http://dx.doi.org/10.1021/acsami.3c13930
田信龙, 黄汉雄. 具有较高回弹性的POE基微孔复合材料的传感性能. 高分子学报, 2023, 54(2), 235-244.
Hou K. H.; Shi X.; Yuan J. G.; Zhang D.; Bai Y. S.; Xu J.; Guo F. M.; Zhang Y. J.; Cao A. Y.; Shang Y. Y.Stretchable PU@CNT/MXene fiber fabricated by external tension for high performance strain sensor and supercapacitor. Adv. Mater. Technol., 2023, 8(18), 2300479. doi:10.1002/admt.202300479http://dx.doi.org/10.1002/admt.202300479
He J. Q.; Zou X. L.; Wang W. J.; Chen M. M.; Jiang S.; Cui C.; Tang H.; Yang L.; Guo R. H.Highly stretchable, highly sensitive, and antibacterial electrospun nanofiber strain sensors with low detection limit and stable CNT/MXene/CNT sandwich conductive layers for human motion detection. Ind. Eng. Chem. Res., 2023, 62(21), 8327-8338. doi:10.1021/acs.iecr.3c00905http://dx.doi.org/10.1021/acs.iecr.3c00905
Cui X. Y.; Miao C. J.; Lu S. W.; Liu X. M.; Yang Y. X.; Sun J. C.Strain sensors made of MXene, CNTs, and TPU/PSF asymmetric structure films with large tensile recovery and applied in human health monitoring. ACS Appl. Mater. Interfaces, 2023, 15(51), 59655-59670. doi:10.1021/acsami.3c11328http://dx.doi.org/10.1021/acsami.3c11328
Alhabeb M.; Maleski K.; Anasori B.; Lelyukh P.; Clark L.; Sin S.; Gogotsi Y.Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater., 2017, 29(18), 7633-7644. doi:10.1021/acs.chemmater.7b02847http://dx.doi.org/10.1021/acs.chemmater.7b02847
Wang S. L.; Deng W. L.; Yang T.; Ao Y.; Zhang H. R.; Tian G.; Deng L.; Huang H. C.; Huang J. F.; Lan B. L.; Yang W. Q.Bioinspired MXene-based piezoresistive sensor with two-stage enhancement for motion capture. Adv. Funct. Mater., 2023, 33(18), 2214503. doi:10.1002/adfm.202370112http://dx.doi.org/10.1002/adfm.202370112
Xiao S. P.; Huang H. X.In situ vitamin C reduction of graphene oxide for preparing flexible TPU nanocomposites with high dielectric permittivity and low dielectric loss. Polym. Test., 2018, 66, 334-341. doi:10.1016/j.polymertesting.2018.01.026http://dx.doi.org/10.1016/j.polymertesting.2018.01.026
Liu H.; Chen X. Y.; Zheng Y. J.; Zhang D. B.; Zhao Y.; Wang C. F.; Pan C. F.; Liu C. T.; Shen C. Y.Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater., 2021, 31(13), 2008006. doi:10.1002/adfm.202008006http://dx.doi.org/10.1002/adfm.202008006
Wang D. Z.; Lin Y.; Hu D. W.; Jiang P. K.; Huang X. Y.Multifunctional 3D-MXene/PDMS nanocomposites for electrical, thermal and triboelectric applications. Compos. Part A Appl. Sci. Manuf., 2020, 130, 105754. doi:10.1016/j.compositesa.2019.105754http://dx.doi.org/10.1016/j.compositesa.2019.105754
Chao M. Y.; He L. Z.; Gong M.; Li N.; Li X. B.; Peng L. F.; Shi F.; Zhang L. Q.; Wan P. B.Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano, 2021, 15(6), 9746-9758. doi:10.1021/acsnano.1c00472http://dx.doi.org/10.1021/acsnano.1c00472
Yan J. F.; Ma Y. N.; Jia G.; Zhao S. R.; Yue Y.; Cheng F.; Zhang C. K.; Cao M. L.; Xiong Y. C.; Shen P. Z.; Gao Y. H.Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem. Eng. J., 2022, 431, 133458. doi:10.1016/j.cej.2021.133458http://dx.doi.org/10.1016/j.cej.2021.133458
Chen Y. A.; Yang Q.; Huang Y. J.; Liao X.; Niu Y. H.Synergistic effect of multiwalled carbon nanotubes and carbon black on rheological behaviors and electrical conductivity of hybrid polypropylene nanocomposites. Polym. Compos., 2018, 39(S2), E723-E732. doi:10.1002/pc.24141http://dx.doi.org/10.1002/pc.24141
Zhang R.; Baxendale M.; Peijs T.Universal resistivity-strain dependence of carbon nanotube/polymer composites. Phys. Rev. B, 2007, 76(19), 195433. doi:10.1103/physrevb.76.195433http://dx.doi.org/10.1103/physrevb.76.195433
0
Views
209
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution