浏览全部资源
扫码关注微信
1.浙江理工大学 化学与化工学院 浙江省高分子材料表界面科学重点实验室 杭州 310018
2.中国科学院长春应用化学研究所 长春 130022
Received:31 August 2024,
Accepted:2024-10-23,
Published:20 April 2025
移动端阅览
罗锦添, 徐全印, 徐文生, 左彪. 高分子玻璃化转变的链长依赖性. 高分子学报, 2025, 56(4), 539-550
Luo, J. T.; Xu, Q. Y.; Xu, W. S.; Zuo, B. Chain length dependence of glass transition in polymers. Acta Polymerica Sinica, 2025, 56(4), 539-550
罗锦添, 徐全印, 徐文生, 左彪. 高分子玻璃化转变的链长依赖性. 高分子学报, 2025, 56(4), 539-550 DOI: 10.11777/j.issn1000-3304.2024.24218. CSTR: 32057.14.GFZXB.2024.7306.
Luo, J. T.; Xu, Q. Y.; Xu, W. S.; Zuo, B. Chain length dependence of glass transition in polymers. Acta Polymerica Sinica, 2025, 56(4), 539-550 DOI: 10.11777/j.issn1000-3304.2024.24218. CSTR: 32057.14.GFZXB.2024.7306.
玻璃化转变的微观机制是凝聚态物理最重要的科学问题之一. 由于链的连通性,高分子表现比小分子物质更复杂的玻璃化行为. 本综述对半个多世纪以来,科学家对高分子玻璃化转变链长依赖性的研究进行了总结. 介绍了高分子玻璃化温度(
T
g
)和脆度指数(
m
)等性质随链长增加而增大并趋于饱和的普遍现象;总结了解释和描述
T
g
和
m
随链长变化的3种主要机制:即高运动活性链末端促进高分子协同运动,从而降低
T
g
和
m
;局部链刚性随链长增加而增大从而减弱链段运动能力,使
T
g
升高;分子链内次级松弛单元的耦合和动态促进激活链段松弛,造成
T
g
随链长增大而增大. 希望通过对高分子玻璃化现象和机理的总结与讨论帮助读者加深对长链大分子玻璃化转变的认识和理解.
Glass transition is one of the most important properties of condensed matter. Chain connectivity endows polymers with complex glass transition behaviour that varies with the chain length. We have summarized more than half a century of research on the chain length dependence of glass transition of polymers. In the first part
we discussed the general phenomenon of the increase in glass transition temperature (
T
g
) and dynamical fragility (
m
) with increasing chain length until they reach saturation values. In the second part
the mechanisms proposed in the past decades to explain the general behaviour of the polymer glass transition were reviewed
including (1) the chain end effect
i.e.
the chain ends associated with extra mobility and excess conformational freedom play a role in accelerating segmental movement and lowering polymer
T
g
; (2) the chain stiffness effect
i.e.
the polymer chains stiffened as the molecular weight in
creased
leading to an increase in
T
g
with chain length before reaching the thresholds; (3) intramolecular coupling effect
i.e.
dynamic couplings of secondary relaxations along the chains facilitate the segmental relaxation
leading to an increase of
T
g
with the chain length. We hope this review helps the readers gain a deeper understanding of the glass transition of polymers and the associated molecular mechanisms.
汪卫华 . 非晶态物质的本质和特性 . 物理学进展 , 2013 , 33 ( 5 ), 177 - 351 . doi: 10.3969/j.issn.1001-2443.2013.05.001 http://dx.doi.org/10.3969/j.issn.1001-2443.2013.05.001
李艳伟 , 孙昭艳 , 安立佳 . 玻璃与玻璃化转变 . 大学化学 , 2016 , 31 ( 3 ), 1 - 10 . doi: 10.3866/PKU.DXHX20160301 http://dx.doi.org/10.3866/PKU.DXHX20160301
Debenedetti P. G. ; Stillinger F. H. Supercooled liquids and the glass transition . Nature , 2001 , 410 ( 6825 ), 259 - 267 . doi: 10.1038/35065704 http://dx.doi.org/10.1038/35065704
Wang W. H. ; Dong C. ; Shek C. Bulk metallic glasses . Mater. Sci. Eng . , 2004 , R 44 , 45 - 89 . doi: 10.1016/j.mser.2004.03.001 http://dx.doi.org/10.1016/j.mser.2004.03.001
Zhong L. ; Wang J. W. ; Sheng H. W. ; Zhang Z. ; Mao S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching . Nature , 2014 , 512 ( 7513 ), 177 - 180 . doi: 10.1038/nature13617 http://dx.doi.org/10.1038/nature13617
Kennedy D. ; Norman , C. What don't we know? Science , 2005 , 309, 75 . doi: 10.1126/science.309.5731.75 http://dx.doi.org/10.1126/science.309.5731.75
Hu W. B. Polymer features in crystallization . Chinese J. Polym. Sci. , 2022 , 40 ( 6 ), 545 - 555 . doi: 10.1007/s10118-022-2710-8 http://dx.doi.org/10.1007/s10118-022-2710-8
Tang X. L. ; Chen W. ; Li L. B. The tough journey of polymer crystallization: battling with chain flexibility and connectivity . Macromolecules , 2019 , 52 ( 10 ), 3575 - 3591 . doi: 10.1021/acs.macromol.8b02725 http://dx.doi.org/10.1021/acs.macromol.8b02725
胡文兵 . 玻璃化转变的热力学理论错在哪里 . 高分子通报 , 2008 , ( 9 ), 65 - 68 .
Fox T. G. ; Flory P. J. Second-order transition temperatures and related properties of polystyrene . I. Influence of molecular weight. J. Appl. Phys. , 1950 , 21 ( 6 ), 581 - 591 . doi: 10.1063/1.1699711 http://dx.doi.org/10.1063/1.1699711
Fox T. G. ; Flory P. J. The glass temperature and related properties of polystyrene . Influence of molecular weight. J. Polym. Sci. , 1954 , 14 ( 75 ), 315 - 319 . doi: 10.1002/pol.1954.120147514 http://dx.doi.org/10.1002/pol.1954.120147514
Ueberreiter K. ; Kanig G. Self-plasticization of polymers . J. Colloid Sci. , 1952 , 7 ( 6 ), 569 - 583 . doi: 10.1016/0095-8522(52)90040-8 http://dx.doi.org/10.1016/0095-8522(52)90040-8
Dalle-Ferrier C. ; Kisliuk A. ; Hong L. ; Carini G. Jr, Carini, G.; D'Angelo, G.; Alba-Simionesco, C.; Novikov, V. N.; Sokolov, A. P. Why many polymers are so fragile: a new perspective . J. Chem. Phys. , 2016 , 145 ( 15 ), 154901 . doi: 10.1063/1.4964362 http://dx.doi.org/10.1063/1.4964362
Sokolov A. P. ; Novikov V. N. ; Ding Y. Why many polymers are so fragile . J. Phys. : Condens. Matter, 2007 , 19 ( 20 ), 205116 . doi: 10.1088/0953-8984/19/20/205116 http://dx.doi.org/10.1088/0953-8984/19/20/205116
Novikov V. N. ; Rössler E. A. Correlation between glass transition temperature and molecular mass in non-polymeric and polymer glass formers . Polymer , 2013 , 54 ( 26 ), 6987 - 6991 . doi: 10.1016/j.polymer.2013.11.002 http://dx.doi.org/10.1016/j.polymer.2013.11.002
Roland C. M. ; Ngai K. L. Normalization of the temperature dependence of segmental relaxation times . Macromolecules , 1992 , 25 ( 21 ), 5765 - 5768 . doi: 10.1021/ma00047a030 http://dx.doi.org/10.1021/ma00047a030
Roland C. M. ; Nagi K. L. Segmental relaxation in poly(dimethylsiloxane) . Macromolecules , 1996 , 29 ( 17 ), 5747 - 5750 . doi: 10.1021/ma960045d http://dx.doi.org/10.1021/ma960045d
Ding Y. F. ; Novikov V. N. ; Sokolov A. P. ; Dalle-Ferrier C. ; Alba-Simionesco C. ; Frick B. Influence of molecular weight on fast dynamics and fragility of polymers . Macromolecules , 2004 , 37 ( 24 ), 9264 - 9272 . doi: 10.1021/ma0492420 http://dx.doi.org/10.1021/ma0492420
Roland C. M. ; Casalini R. Temperature dependence of local segmental motion in polystyrene and its variation with molecular weight . 2003 , 119 ( 3 ), 1838 - 1842 . doi: 10.1063/1.1581850 http://dx.doi.org/10.1063/1.1581850
Yu W. C. ; Sung C. S. P. ; Robertson R. E. Site-specific labeling and the distribution of free volume in glassy polystyrene . Macromolecules , 1988 , 21 ( 2 ), 355 - 364 . doi: 10.1021/ma00180a012 http://dx.doi.org/10.1021/ma00180a012
Lund R. ; Plaza-García S. ; Alegría A. ; Colmenero J. ; Janoski J. ; Chowdhury S. R. ; Quirk R. P. Polymer dynamics of well-defined, chain-end-functionalized polystyrenes by dielectric spectroscopy . Macromolecules , 2009 , 42 ( 22 ), 8875 - 8881 . doi: 10.1021/ma901617u http://dx.doi.org/10.1021/ma901617u
Miwa Y. ; Udagawa T. ; Urakawa O. ; Nobukawa S. ; Kutsumizu S. Rapid stretching vibration at the polymer chain end . ACS Macro Lett. , 2014 , 3 ( 2 ), 126 - 129 . doi: 10.1021/mz400628b http://dx.doi.org/10.1021/mz400628b
Bullock A. T. ; Cameron G. G. ; Krajewski V. Electron spin resonance studies of spin-labeled polymers . 11 . Segmental and end-group mobility of some acrylic ester polymers. J. Phys. Chem., 1976, 80 ( 16 ), 1792 - 1797 . doi: 10.1021/j100557a011 http://dx.doi.org/10.1021/j100557a011
Miwa Y. ; Yamamoto K. ; Sakaguchi M. ; Sakai M. ; Makita S. ; Shimada S. Direct detection of high mobility around chain ends of poly(methyl methacrylate) by the spin-Labeling . Macromolecules , 2005 , 38 ( 3 ), 832 - 838 . doi: 10.1021/ma048287y http://dx.doi.org/10.1021/ma048287y
Zhang L. H. ; Marsiglio J. A. ; Lan T. ; Torkelson J. M. Dramatic tunability of the glass transition temperature and fragility of low molecular weight polystyrene by initiator fragments located at chain ends . Macromolecules , 2016 , 49 ( 6 ), 2387 - 2398 . doi: 10.1021/acs.macromol.5b02704 http://dx.doi.org/10.1021/acs.macromol.5b02704
Zhang L. H. ; Torkelson J. M. Enhanced glass transition temperature of low molecular weight poly(methyl methacrylate) by initiator fragments located at chain ends . Polymer , 2017 , 122 , 194 - 199 . doi: 10.1016/j.polymer.2017.06.054 http://dx.doi.org/10.1016/j.polymer.2017.06.054
Santangelo P. G. ; Roland C. M. ; Chang T. ; Cho D. ; Roovers J. Dynamics near the glass temperature of low molecular weight cyclic polystyrene . Macromolecules , 2001 , 34 ( 26 ), 9002 - 9005 . doi: 10.1021/ma011069+ http://dx.doi.org/10.1021/ma011069+
Dong Y. T. ; Song X. Y. ; Xu X. L. ; Jiang S. C. ; Douglas J. F. ; Sun Z. Y. ; Xu W. S. Glass formation in ring polymer melts having variable knot complexity and molecular mass . Macromolecules , 2024 , 57 ( 14 ), 6875 - 6896 . doi: 10.1021/acs.macromol.4c00901 http://dx.doi.org/10.1021/acs.macromol.4c00901
Song X. Y. ; Yang Z. Y. ; Yuan Q. L. ; Li S. W. ; Tang Z. Q. ; Dong Y. T. ; Jiang S. C. ; Xu W. S. Understanding mass dependence of glass formation in ring polymers . Chinese J. Polym. Sci. , 2023 , 41 ( 9 ), 1447 - 1461 . doi: 10.1007/s10118-023-3004-5 http://dx.doi.org/10.1007/s10118-023-3004-5
Roovers J. E. L. ; Toporowski P. M. The glass transition temperature of star-shaped polystyrenes . J. Appl. Polym. Sci. , 1974 , 18 ( 6 ), 1685 - 1691 . doi: 10.1002/app.1974.070180609 http://dx.doi.org/10.1002/app.1974.070180609
Qian Z. Y. ; Minnikanti V. S. ; Sauer B. B. ; Dee G. T. ; Archer L. A. Surface tension of symmetric star polymer melts . Macromolecules , 2008 , 41 ( 13 ), 5007 - 5013 . doi: 10.1021/ma8002888 http://dx.doi.org/10.1021/ma8002888
White R. P. ; Lipson J. E. G. Polymer free volume and its connection to the glass transition . Macromolecules , 2016 , 49 ( 11 ), 3987 - 4007 . doi: 10.1021/acs.macromol.6b00215 http://dx.doi.org/10.1021/acs.macromol.6b00215
Mark J. ; Ngai K. ; Graessley W. ; Mandelkern L. ; Samulski E. ; Koenig J. ; Wignall G. Physical Properties of Polymers . 3 rd ed . Cambridge, UK: Cambridge University Press, 2004 . 102 - 104 . doi: 10.1017/cbo9781139165167 http://dx.doi.org/10.1017/cbo9781139165167
何曼君 , 陈维孝 , 董西侠 . 高分子物理 . 修订版. 上海 : 复旦大学出版社 , 2000 . 20 - 29 , 255 - 256 .
Gibbs J. H. ; DiMarzio E. A. Nature of the glass transition and the glassy state . J. Chem. Phys. , 1958 , 28 ( 3 ), 373 - 383 . doi: 10.1063/1.1744141 http://dx.doi.org/10.1063/1.1744141
白蓉 , 李尚伟 , 陈全 , 孙昭艳 , 徐文生 . 遥爪型聚丙二醇熔体动力学的宽频介电谱研究 . 高等学校化学学报 , 2024 , 45 ( 6 ), 139 - 150 .
Zou L. N. ; Cheng X. ; Rivers M. L. ; Jaeger H. M. ; Nagel S. R. The packing of granular polymer chains . Science , 2009 , 326 ( 5951 ), 408 - 410 . doi: 10.1126/science.1177114 http://dx.doi.org/10.1126/science.1177114
Lapp A. ; Picot C. ; Benoit H. Determination of the Flory interaction parameters in miscible polymer blends by measurement of the apparent radius of gyration . Macromolecules , 1985 , 18 ( 12 ), 2437 - 2441 . doi: 10.1021/ma00154a017 http://dx.doi.org/10.1021/ma00154a017
Konishi T. ; Yoshizaki T. ; Saito T. ; Einaga Y. ; Yamakawa H. Mean-square radius of gyration of oligo- and polystyrenes in dilute solutions . Macromolecules , 1990 , 23 ( 1 ), 290 - 297 . doi: 10.1021/ma00203a050 http://dx.doi.org/10.1021/ma00203a050
Ding Y. F. ; Kisliuk A. ; Sokolov A. P. When does a molecule become a polymer? Macromolecules , 2004 , 37 ( 1 ), 161 - 166 . doi: 10.1021/ma035618i http://dx.doi.org/10.1021/ma035618i
Ding Y. ; Sokolov A. P. Comment on the dynamic bead size and Kuhn segment length in polymers: example of polystyrene . J. Polym. Sci. Part B Polym. Phys. , 2004 , 42 ( 18 ), 3505 - 3511 . doi: 10.1002/polb.20235 http://dx.doi.org/10.1002/polb.20235
Bormuth A. ; Henritzi P. ; Vogel M. Chain-length dependence of the segmental relaxation in polymer melts: molecular dynamics simulation studies on poly(propylene oxide) . Macromolecules , 2010 , 43 ( 21 ), 8985 - 8992 . doi: 10.1021/ma101721d http://dx.doi.org/10.1021/ma101721d
Chee K. K. Dependence of glass transition temperature on chain flexibility and intermolecular interactions in polymers . J. Appl. Polym. Sci. , 1991 , 43 ( 6 ), 1205 - 1208 . doi: 10.1002/app.1991.070430622 http://dx.doi.org/10.1002/app.1991.070430622
Colmenero J. Are polymers standard glass-forming systems? The role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers. J. Phys.: Condens. Matter , 2015 , 27 ( 10 ), 103101 . doi: 10.1088/0953-8984/27/10/103101 http://dx.doi.org/10.1088/0953-8984/27/10/103101
Kumar R. ; Goswami M. ; Sumpter B. G. ; Novikov V. N. ; Sokolov A. P. Effects of backbone rigidity on the local structure and dynamics in polymer melts and glasses . Phys. Chem. Chem. Phys. , 2013 , 15 ( 13 ), 4604 - 4609 . doi: 10.1039/c3cp43737j http://dx.doi.org/10.1039/c3cp43737j
Bernabei M. ; Moreno A. J. ; Colmenero J. Dynamic arrest in polymer melts: competition between packing and intramolecular barriers . Phys. Rev. Lett. , 2008 , 101 ( 25 ), 255701 . doi: 10.1103/physrevlett.101.255701 http://dx.doi.org/10.1103/physrevlett.101.255701
Xu W. S. ; Douglas J. F. ; Xu X. L. Molecular dynamics study of glass formation in polymer melts with varying chain stiffness . Macromolecules , 2020 , 53 ( 12 ), 4796 - 4809 . doi: 10.1021/acs.macromol.0c00731 http://dx.doi.org/10.1021/acs.macromol.0c00731
Mirigian S. ; Schweizer K. S. Dynamical theory of segmental relaxation and emergent elasticity in supercooled polymer melts . Macromolecules , 2015 , 48 ( 6 ), 1901 - 1913 . doi: 10.1021/ma5022083 http://dx.doi.org/10.1021/ma5022083
Hintermeyer J. ; Herrmann A. ; Kahlau R. ; Goiceanu C. ; Rössler E. A. Molecular weight dependence of glassy dynamics in linear polymers revisited . Macromolecules , 2008 , 41 ( 23 ), 9335 - 9344 . doi: 10.1021/ma8016794 http://dx.doi.org/10.1021/ma8016794
Andreozzi L. ; Faetti M. ; Giordano M. ; Zulli F. Molecular-weight dependence of enthalpy relaxation of PMMA . Macromolecules , 2005 , 38 ( 14 ), 6056 - 6067 . doi: 10.1021/ma0507037 http://dx.doi.org/10.1021/ma0507037
Clarson S. J. ; Dodgson K. ; Semlyen J. A. Studies of cyclic and linear poly(dimethylsiloxanes): 19 . Glass transition temperatures and crystallization behaviour. Polymer , 1985 , 26 ( 6 ), 930 - 934 . doi: 10.1016/0032-3861(85)90140-5 http://dx.doi.org/10.1016/0032-3861(85)90140-5
Nakamura Y. ; Norisuye, T. Polymer properties in solutions . In: Matyjaszewski, K., Möller, M., ed. Polymer Science: A Comprehensive Reference . Amsterdam : Elsevier , 2012 . 5 - 32 . doi: 10.1016/b978-0-444-53349-4.00020-0 http://dx.doi.org/10.1016/b978-0-444-53349-4.00020-0
Flory P. J. ; Semlyen J. A. Macrocyclization equilibrium constants and the statistical configuration of poly(dimethylsiloxane) chains . J. Am. Chem. Soc. , 1966 , 88 ( 14 ), 3209 - 3212 . doi: 10.1021/ja00966a006 http://dx.doi.org/10.1021/ja00966a006
Adam G. ; Gibbs J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids . J. Chem. Phys. , 1965 , 43 ( 1 ), 139 - 146 . doi: 10.1063/1.1696442 http://dx.doi.org/10.1063/1.1696442
Christie D. ; Register R. A. ; Priestley R. D. Direct measurement of the local glass transition in self-assembled copolymers with nanometer resolution . ACS Cent. Sci. , 2018 , 4 ( 4 ), 504 - 511 . doi: 10.1021/acscentsci.8b00043 http://dx.doi.org/10.1021/acscentsci.8b00043
Christie D. ; Register R. A. ; Priestley R. D. Role of chain connectivity across an interface on the dynamics of a nanostructured block copolymer . Phys. Rev. Lett. , 2018 , 121 ( 24 ), 247801 . doi: 10.1103/physrevlett.121.247801 http://dx.doi.org/10.1103/physrevlett.121.247801
Hao Z. W. ; Ghanekarade A. ; Zhu N. T. ; Randazzo K. ; Kawaguchi D. ; Tanaka K. ; Wang X. P. ; Simmons D. S. ; Priestley R. D. ; Zuo B. Mobility gradients yield rubbery surfaces on top of polymer glasses . Nature , 2021 , 596 ( 7872 ), 372 - 376 . doi: 10.1038/s41586-021-03733-7 http://dx.doi.org/10.1038/s41586-021-03733-7
Tian H. ; Xu Q. ; Zhang H. ; Priestley R. D. ; Zuo B. Surface dynamics of glasses . Appl. Phys. Rev. , 2022 , 9 , 011316 . doi: 10.1063/5.0083726 http://dx.doi.org/10.1063/5.0083726
Zuo B. ; Zhou H. ; Davis M. J. B. ; Wang X. P. ; Priestley R. D. Effect of local chain conformation in adsorbed nanolayers on confined polymer molecular mobility . Phys. Rev. Lett. , 2019 , 122 ( 21 ), 217801 . doi: 10.1103/physrevlett.122.217801 http://dx.doi.org/10.1103/physrevlett.122.217801
Yang Y. H. ; Tian H. K. ; Napolitano S. ; Zuo B. Crystallization in thin films of polymer glasses: the role of free surfaces, solid interfaces and their competition . Prog. Polym. Sci. , 2023 , 144 , 101725 . doi: 10.1016/j.progpolymsci.2023.101725 http://dx.doi.org/10.1016/j.progpolymsci.2023.101725
胡文兵 . 受本体玻璃态增强的表面高分子橡胶态行为 . 高分子学报 , 2021 , 52 ( 11 ), 1424 - 1426 .
Tian H. K. ; Luo J. T. ; Tang Q. Y. ; Zha H. ; Priestley R. D. ; Hu W. B. ; Zuo B. Intramolecular dynamic coupling slows surface relaxation of polymer glasses . Nat. Commun. , 2024 , 15 ( 1 ), 6082 . doi: 10.1038/s41467-024-50398-7 http://dx.doi.org/10.1038/s41467-024-50398-7
Baker D. L. ; Reynolds M. ; Masurel R. ; Olmsted P. D. ; Mattsson J. Cooperative intramolecular dynamics control the chain-length-dependent glass transition in polymers . Phys. Rev. X , 2022 , 12 ( 2 ), 021047 . doi: 10.1103/physrevx.12.021047 http://dx.doi.org/10.1103/physrevx.12.021047
Cown J. M. G. Some general features of Tg- M relations for oligomers and amorphous polymers . Eur. Polym. J. , 1975 , 11 ( 4 ), 297 - 300 . doi: 10.1016/0014-3057(75)90037-3 http://dx.doi.org/10.1016/0014-3057(75)90037-3
Claudy P. ; Létoffé J. M. ; Camberlain Y. ; Pascault J. P. Glass transition of polystyrene versus molecular weight . Polym. Bull. , 1983 , 9 ( 4 ), 208 - 215 .
Boyer R. F. Mechanical motions in amorphous and semi-crystalline polymers . Polymer , 1976 , 17 ( 11 ), 996 - 1008 . doi: 10.1016/0032-3861(76)90174-9 http://dx.doi.org/10.1016/0032-3861(76)90174-9
Bershtein V. A. ; Egorov V. M. ; Podolsky A. F. ; Stepanov V. A. Interrelationship and common nature of the β relaxation and the glass transition in polymers . J. Polym. Sci. B Polym. Lett. Ed. , 1985 , 23 ( 7 ), 371 - 377 . doi: 10.1002/pol.1985.130230705 http://dx.doi.org/10.1002/pol.1985.130230705
0
Views
304
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution