浏览全部资源
扫码关注微信
北京师范大学化学学院 北京 100875
Zheng-ping Liu, E-mail: lzp@bnu.edu.cn
Received:13 September 2024,
Accepted:2024-10-31,
Published Online:24 January 2025,
Published:20 March 2025
移动端阅览
马小飞, 李君, 刘正平. 室温下多重交联高性能高直链玉米淀粉膜的制备及性能. 高分子学报, 2025, 56(3), 408-419
Ma, X. f.; Li, J.; Liu, Z. P. Preparation and properties of high-performance high amylose corn starch films with multiple crosslinking at room temperature. Acta Polymerica Sinica, 2025, 56(3), 408-419
马小飞, 李君, 刘正平. 室温下多重交联高性能高直链玉米淀粉膜的制备及性能. 高分子学报, 2025, 56(3), 408-419 DOI: 10.11777/j.issn1000-3304.2024.24236. CSTR: 32057.14.GFZXB.2024.7314.
Ma, X. f.; Li, J.; Liu, Z. P. Preparation and properties of high-performance high amylose corn starch films with multiple crosslinking at room temperature. Acta Polymerica Sinica, 2025, 56(3), 408-419 DOI: 10.11777/j.issn1000-3304.2024.24236. CSTR: 32057.14.GFZXB.2024.7314.
室温常压下高直链玉米淀粉(HACS)在水中不能溶解,这限制了其在可降解包装薄膜领域的应用. 本文中采用四丁基氢氧化铵(TBAH)水溶液作为溶剂,实现了室温常压下HACS的溶解,并通过分子链的多重交联(同时具备物理交联、配位键交联和共价键交联)制备了高性能HACS薄膜. 采傅里叶红外光谱、原子力显微镜、X射线衍射及拉伸实验表征了薄膜的结构、表面形貌、结晶性及力学性能. 结果表明,与单重物理交联和双重交联(物理-配位键交联、物理-共价键交联)的HACS膜相比,多重交联薄膜的表面粗糙度和结晶性均更低,薄膜的力学性能更强,断裂伸长率为65%,拉伸强度达3.18 MPa. 本文工作为开发高性能淀粉基薄膜材料提供了新的思路和方法.
High amylose corn starch (HACS) is insoluble in water at room temperature and atmospheric pressure
which limits its applications in biodegradable packaging films. This study employed a tetrabutylammonium hydroxide (TBAH) aqueous solution as a solvent to achieve the dissolution of HACS at room temperature and atmospheric pressure. Subsequently
high-performance HACS films were fabricated through multiple crosslinking of polymer chains
including physical
coordination
and covalent crosslinking. The structure
surface morphology
crystallinity
and mechanical properties of the films were characterized using infrared spectroscopy
atomic force microscopy
X-ray diffraction
and tensile testing. Results demonstrated that compared to HACS films with single physical crosslinking and double crosslinking (physical-coordinated crosslinking and physical-covalent crosslinking)
the multiple crosslinked films exhibited lower surface roughness and crystallinity
along with enhanced mechanical properties. The multiple crosslinked films exhibited a tensile strength of 3.18 MPa and an elongation at break of 65%. This study provides a novel approach and strategy for the development of high-performance starch-based film materials.
Somanathan H. ; Sathasivam R. ; Sivaram S. ; Kumaresan S. M. ; Muthuraman M. S. ; Park S. U. An update on polyethylene and biodegradable plastic mulch films and their impact on the environment . Chemosphere , 2022 , 307 , 135839 . doi: 10.1016/j.chemosphere.2022.135839 http://dx.doi.org/10.1016/j.chemosphere.2022.135839
Al Mamun A. ; Prasetya T. A. E. ; Dewi I. R. ; Ahmad M. Microplastics in human food chains: food becoming a threat to health safety . Sci. Total. Environ. , 2023 , 858 , 159834 . doi: 10.1016/j.scitotenv.2022.159834 http://dx.doi.org/10.1016/j.scitotenv.2022.159834
Kumar M. ; Chen H. Y. ; Sarsaiya S. ; Qin S. Y. ; Liu H. M. ; Awasthi M. K. ; Kumar S. ; Singh L. ; Zhang Z. Q. ; Bolan N. S. ; Pandey A. ; Varjani S. ; Taherzadeh M. J. Current research trends on micro- and nano-plastics as an emerging threat to global environment: a review . J. Hazard. Mater. , 2021 , 409 , 124967 . doi: 10.1016/j.jhazmat.2020.124967 http://dx.doi.org/10.1016/j.jhazmat.2020.124967
Liu E. K. ; Zhang L. W. ; Dong W. Y. ; Yan C. R. Biodegradable plastic mulch films in agriculture: feasibility and challenges . Environ. Res. Lett. , 2021 , 16 ( 1 ), 011004 . doi: 10.1088/1748-9326/abd211 http://dx.doi.org/10.1088/1748-9326/abd211
do Val Siqueira L. ; La Fuente Arias C. I. ; Maniglia B. C. ; Tadini C. C. Starch-based biodegradable plastics: methods of production, challenges and future perspectives . Curr. Opin. Food Sci. , 2021 , 38 , 122 - 130 . doi: 10.1016/j.cofs.2020.10.020 http://dx.doi.org/10.1016/j.cofs.2020.10.020
Liu H. S. ; Yu L. ; Xie F. W. ; Chen L. Gelatinization of cornstarch with different amylose/amylopectin content . Carbohydr. Polym. , 2006 , 65 ( 3 ), 357 - 363 . doi: 10.1016/j.carbpol.2006.01.026 http://dx.doi.org/10.1016/j.carbpol.2006.01.026
Li M. ; Liu P. ; Zou W. ; Yu L. ; Xie F. W. ; Pu H. Y. ; Liu H. S. ; Chen L. Extrusion processing and characterization of edible starch films with different amylose contents . J. Food Eng. , 2011 , 106 ( 1 ), 95 - 101 . doi: 10.1016/j.jfoodeng.2011.04.021 http://dx.doi.org/10.1016/j.jfoodeng.2011.04.021
Obadi M. ; Qi Y. J. ; Xu B. High-amylose maize starch: structure, properties, modifications and industrial applications . Carbohydr. Polym. , 2023 , 299 , 120185 . doi: 10.1016/j.carbpol.2022.120185 http://dx.doi.org/10.1016/j.carbpol.2022.120185
Chen X. ; Du X. F. ; Chen P. R. ; Guo L. ; Xu Y. ; Zhou X. H. Morphologies and gelatinization behaviours of high-amylose maize starches during heat treatment . Carbohydr. Polym. , 2017 , 157 , 637 - 642 . doi: 10.1016/j.carbpol.2016.10.024 http://dx.doi.org/10.1016/j.carbpol.2016.10.024
Chen L. ; Wu F. ; Xiang M. ; Zhang W. N. ; Wu Q. X. ; Lu Y. M. ; Fu J. J. ; Chen M. L. ; Li S. N. ; Chen Y. ; Du X. F. Encapsulation of tea polyphenols into high amylose corn starch composite nanofibrous film for active antimicrobial packaging . Int. J. Biol. Macromol. , 2023 , 245 , 125245 . doi: 10.1016/j.ijbiomac.2023.125245 http://dx.doi.org/10.1016/j.ijbiomac.2023.125245
Bertuzzi M. A. ; Gottifredi J. C. ; Armada M. Mechanical properties of a high amylose content corn starch based film, gelatinized at low temperature . Braz. J. Food Technol. , 2012 , 15 ( 3 ), 219 - 227 . doi: 10.1590/s1981-67232012005000015 http://dx.doi.org/10.1590/s1981-67232012005000015
Wang J. L. ; Yuan C. ; Cui B. ; Li J. P. ; Gao W. ; Dong X. Q. The influence of calcium chloride concentration on the mechanical and barrier properties of high amylose corn starch film . Ind. Crops Prod. , 2022 , 188 , 115695 . doi: 10.1016/j.indcrop.2022.115695 http://dx.doi.org/10.1016/j.indcrop.2022.115695
Ryu S. Y. ; Rhim J. W. ; Roh H. J. ; Kim S. S. Preparation and physical properties of zein-coated high-amylose corn starch film . LWT-Food Sci. Technol. , 2002 , 35 ( 8 ), 680 - 686 . doi: 10.1006/fstl.2002.0929 http://dx.doi.org/10.1006/fstl.2002.0929
Chen P. ; Yu L. ; Simon G. P. ; Liu X. X. ; Dean K. ; Chen L. Internal structures and phase-transitions of starch granules during gelatinization . Carbohydr. Polym. , 2011 , 83 ( 4 ), 1975 - 1983 . doi: 10.1016/j.carbpol.2010.11.001 http://dx.doi.org/10.1016/j.carbpol.2010.11.001
Huber K. C. ; BeMiller J. N. Channels of maize and sorghum starch granules . Carbohydr. Polym. , 2000 , 41 ( 3 ), 269 - 276 . doi: 10.1016/s0144-8617(99)00145-9 http://dx.doi.org/10.1016/s0144-8617(99)00145-9
Ratnayake W. S. ; Jackson D. S. Starch gelatinization . Adv. Food Nutr. Res. , 2008 , 55 , 221 - 268 . doi: 10.1016/s1043-4526(08)00405-1 http://dx.doi.org/10.1016/s1043-4526(08)00405-1
Chang Q. ; Zheng B. D. ; Zhang Y. ; Zeng H. L. A comprehensive review of the factors influencing the formation of retrograded starch . Int. J. Biol. Macromol. , 2021 , 186 , 163 - 173 . doi: 10.1016/j.ijbiomac.2021.07.050 http://dx.doi.org/10.1016/j.ijbiomac.2021.07.050
Nakazawa F. ; Noguchi S. ; Takahashi J. ; Takada M. Thermal equilibrium state of starch-water mixture studied by differential scanning calorimetry . Agric. Biol. Chem. , 1984 , 48 ( 11 ), 2647 - 2653 . doi: 10.1080/00021369.1984.10866575 http://dx.doi.org/10.1080/00021369.1984.10866575
Kibar E. A. A. ; Gönenç I. ; Us F. Gelatinization of waxy, normal and high amylose corn starches . GIDA-J. Food , 2010 , 35 ( 4 ), 237 - 244
Kapoor B. ; Bhattacharya M. Dynamic and extensional properties of starch in aqueous dimethylsulfoxide . Carbohydr. Polym. , 2000 , 42 ( 4 ), 323 - 335 . doi: 10.1016/s0144-8617(99)00188-5 http://dx.doi.org/10.1016/s0144-8617(99)00188-5
Li Y. ; Liu P. ; Ma C. ; Zhang N. ; Shang X. Q. ; Wang L. M. ; Xie F. W. Structural disorganization and chain aggregation of high-amylose starch in different chloride salt solutions . ACS Sustain. Chem. Eng. , 2020 , 8 ( 12 ), 4838 - 4847 . doi: 10.1021/acssuschemeng.9b07726 http://dx.doi.org/10.1021/acssuschemeng.9b07726
Tang H. B. ; Liu Y. H. ; Li Y. P. ; Li Q. ; Liu X. J. Hydroxypropylation of cross-linked sesbania gum, characterization and properties . Int. J. Biol. Macromol. , 2020 , 152 , 1010 - 1019 . doi: 10.1016/j.ijbiomac.2019.10.188 http://dx.doi.org/10.1016/j.ijbiomac.2019.10.188
Forrest B. Identification and quantitation of hydroxypropylation of starch by FTIR . Starch Stärke , 1992 , 44 ( 5 ), 179 - 183 . doi: 10.1002/star.19920440505 http://dx.doi.org/10.1002/star.19920440505
Liu J. H. ; Wang B. ; Lin L. ; Zhang J. Y. ; Liu W. L. ; Xie J. H. ; Ding Y. T. Functional, physicochemical properties and structure of cross-linked oxidized maize starch . Food Hydrocoll. , 2014 , 36 , 45 - 52 . doi: 10.1016/j.foodhyd.2013.08.013 http://dx.doi.org/10.1016/j.foodhyd.2013.08.013
Tang H. B. ; Zhang W. ; Li Y. P. ; Liu X. J. Effect of triple modification on structure and properties of sesbania gum . Polym. Bull. , 2024 , 81 ( 18 ), 17299 - 17316 . doi: 10.1007/s00289-024-05513-5 http://dx.doi.org/10.1007/s00289-024-05513-5
Tang H. B. ; Yao Y. ; Li Y. P. ; Dong S. Q. Effect of cross-linking and oxidization on structure and properties of sesbania gum . Int. J. Biol. Macromol. , 2018 , 114 , 640 - 648 . doi: 10.1016/j.ijbiomac.2018.03.144 http://dx.doi.org/10.1016/j.ijbiomac.2018.03.144
Guo K. ; Zhang L. ; Bian X. F. ; Cao Q. H. ; Wei C. X. A-, B- and C-type starch granules coexist in root tuber of sweet potato . Food Hydrocoll. , 2020 , 98 , 105279 . doi: 10.1016/j.foodhyd.2019.105279 http://dx.doi.org/10.1016/j.foodhyd.2019.105279
Zhu J. ; Gao W. ; Wang B. ; Kang X. M. ; Liu P. F. ; Cui B. ; Abd El-Aty A. M. Preparation and evaluation of starch-based extrusion-blown nanocomposite films incorporated with nano-ZnO and nano-SiO 2 . Int. J. Biol. Macromol. , 2021 , 183 , 1371 - 1378 . doi: 10.1016/j.ijbiomac.2021.05.118 http://dx.doi.org/10.1016/j.ijbiomac.2021.05.118
Pozo C. ; Rodríguez-Llamazares S. ; Bouza R. ; Barral L. ; Castaño J. ; Müller N. ; Restrepo I. Study of the structural order of native starch granules using combined FTIR and XRD analysis . J. Polym. Res. , 2018 , 25 ( 12 ), 266 . doi: 10.1007/s10965-018-1651-y http://dx.doi.org/10.1007/s10965-018-1651-y
Kuniak L. ; Marchessault R. H. Study of the crosslinking reaction between epichlorohydrin and starch . Starch Stärke , 1972 , 24 ( 4 ), 110 - 116 . doi: 10.1002/star.19720240404 http://dx.doi.org/10.1002/star.19720240404
0
Views
149
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution