浏览全部资源
扫码关注微信
环境与火安全高分子材料省部共建协同创新中心 环保型高分子材料国家地方联合工程实验室 高分子材料工程国家重点实验室 四川大学化学学院 成都 610064
Teng Fu, E-mail: Futeng@scu.edu.cn
Yu-Zhong Wang, E-mail: yzwang@scu.edu.cn
Received:21 September 2024,
Accepted:2024-10-19,
Published Online:10 January 2025,
Published:20 March 2025
移动端阅览
王然, 付腾, 杨雅捷, 汪秀丽, 王玉忠. 集成结构性能与真实燃烧信息的阻燃材料数据库设计构建. 高分子学报, 2025, 56(3), 420-430
Wang, R.; Fu, T.; Yang, Y. J.; Wang, X. L.; Wang, Y. Z. Design and construction of a flame-retardant materials database integrating structural performance and real combustion data. Acta Polymerica Sinica, 2025, 56(3), 420-430
王然, 付腾, 杨雅捷, 汪秀丽, 王玉忠. 集成结构性能与真实燃烧信息的阻燃材料数据库设计构建. 高分子学报, 2025, 56(3), 420-430 DOI: 10.11777/j.issn1000-3304.2024.24243. CSTR: 32057.14.GFZXB.2024.7319.
Wang, R.; Fu, T.; Yang, Y. J.; Wang, X. L.; Wang, Y. Z. Design and construction of a flame-retardant materials database integrating structural performance and real combustion data. Acta Polymerica Sinica, 2025, 56(3), 420-430 DOI: 10.11777/j.issn1000-3304.2024.24243. CSTR: 32057.14.GFZXB.2024.7319.
随着材料基因工程的发展,大数据与人工智能相结合的研究工具日渐成为材料科学发展的新范式. 然而,该研究工具在预测有机高分子材料的阻燃性能时效果差. 究其原因,与有机高分子材料固有性质主要由其自身结构决定不同,阻燃性不仅与材料的自身结构密切相关,还受到复杂的燃烧过程的显著影响. 鉴于此,本工作提出了一种适宜于阻燃材料研究的数据库构建策略,利用数据库管理工具和虚拟燃烧器,提取聚合物结构、性能和燃烧过程数据,构建了一套基于Web界面的阻燃高分子材料数据库. 该数据库不仅包含常规高分子材料数据库的材料名称、化学结构、热物性能、燃烧性能、数据源等信息,更含有聚合物真实燃烧过程中产生的热解/燃烧产物数据. 该数据库为基于数据驱动的阻燃材料研发新范式提供了统一标准的、可检索的、可溯源的阻燃数据标准,为建立高质量阻燃数据集提供了基础.
With the development of materials genome engineering
research tools that integrate big data and artificial intelligence have become a new paradigm in materials science. However
these tools have shown limited effectiveness in predicting the flame-retardant properties of organic polymers. The main reason is that
unlike the intrinsic properties of organic polymers
which are determined solely by their molecular structure
flame retardancy is not only highly correlated with the material's structure but is also strongly influenced by the complex combustion process. To address this challenge
we propose a database construction strategy specifically designed for flame-retardant material research. Using database management tools and a virtual combustion generator
we extracted data on polymer structures
properties
and combustion processes and developed a web-based flame-retardant polymer database. This database includes not only conventional polymer information such as material names
chemical structures
thermophysical properties
flame-retardant performance
and data sources
but also data on pyrolysis/combustion products generated during real combustion processes. The database provides a unified
searchable
and traceable standard for flame-retardant data
laying the foundation for a data-driven research paradigm in flame-retardant material development and the creation of a high-quality flame-retardant dataset.
Dasari A. ; Yu Z. Z. ; Cai G. P. ; Mai Y. W. Recent developments in the fire retardancy of polymeric materials . Prog. Polym. Sci. , 2013 , 38 ( 9 ), 1357 - 1387 . doi: 10.1016/j.progpolymsci.2013.06.006 http://dx.doi.org/10.1016/j.progpolymsci.2013.06.006
龙家伟 , 史小慧 , 刘博文 , 卢鹏 , 陈力 , 王玉忠 . 一种新型含硅氧烷间隔基元的半芳香族共聚酰胺 . 高分子学报 , 2020 , 51 ( 7 ), 681 - 686 . doi: 10.11777/j.issn1000-3304.2020.20125 http://dx.doi.org/10.11777/j.issn1000-3304.2020.20125
Liu B. W. ; Zhao H. B. ; Wang Y. Z. Advanced flame-retardant methods for polymeric materials . Adv. Mater. , 2022 , 34 ( 46 ), 2107905 . doi: 10.1002/adma.202107905 http://dx.doi.org/10.1002/adma.202107905
Ao X. ; Vázquez-López A. ; Mocerino D. ; González C. ; Wang D. Y. Flame retardancy and fire mechanical properties for natural fiber/polymer composite: a review . Compos. Part B Eng. , 2024 , 268 , 111069 . doi: 10.1016/j.compositesb.2023.111069 http://dx.doi.org/10.1016/j.compositesb.2023.111069
张佳燕 , 刘博文 , 王玉忠 , 赵海波 . 聚氨酯泡沫无卤阻燃研究进展 . 高分子学报 , 2022 , 53 ( 7 ), 842 - 855 . doi: 10.11777/j.issn1000-3304.2022.22062 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22062
陈琳 , 吴嘉宁 , 倪延朋 , 付腾 , 吴志正 , 汪秀丽 , 王玉忠 . 苯酰亚胺结构对PET阻燃抗熔滴及抑烟的贡献 . 高分子学报 , 2017 , ( 7 ), 1207 - 1214 . doi: 10.11777/j.issn1000-3304.2017.17079 http://dx.doi.org/10.11777/j.issn1000-3304.2017.17079
Lu S. Y. ; Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers . Prog. Polym. Sci. , 2002 , 27 ( 8 ), 1661 - 1712 . doi: 10.1016/s0079-6700(02)00018-7 http://dx.doi.org/10.1016/s0079-6700(02)00018-7
Laoutid, F. Multicomponent FR systems fire retardancy of polymeric materials . In: Wilkie, A., Morgan, A. B., ed. Fire Retardancy of Polymeric Materials , 2 nd ed . Boca Raton, Florida : Taylor & Francis Group , 2010 , 301 - 328 . doi: 10.1201/9781420084009-c12 http://dx.doi.org/10.1201/9781420084009-c12
Jiang P. ; Gu X. Y. ; Zhang S. ; Wu S. D. ; Zhao Q. ; Hu Z. W. Synthesis, characterization, and utilization of a novel phosphorus/nitrogen-containing flame retardant . Ind. Eng. Chem. Res. , 2015 , 54 ( 11 ), 2974 - 2982 . doi: 10.1021/ie505021d http://dx.doi.org/10.1021/ie505021d
Gu J. W. ; Zhang G. C. ; Dong S. L. ; Zhang Q. Y. ; Kong J. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings . Surf. Coat. Technol. , 2007 , 201 ( 18 ), 7835 - 7841 . doi: 10.1016/j.surfcoat.2007.03.020 http://dx.doi.org/10.1016/j.surfcoat.2007.03.020
Norouzi M. ; Zare Y. ; Kiany P. Nanoparticles as effective flame retardants for natural and synthetic textile polymers: application, mechanism, and optimization . Polym. Rev. , 2015 , 55 ( 3 ), 531 - 560 . doi: 10.1080/15583724.2014.980427 http://dx.doi.org/10.1080/15583724.2014.980427
Schartel B. Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? Materials , 2010 , 3 ( 10 ), 4710 - 4745 . doi: 10.3390/ma3104710 http://dx.doi.org/10.3390/ma3104710
Zhang S. Y. ; Fu T. ; Gong Y. ; Guo D. M. ; Wang X. L. ; Wang Y. Z. Design and synthesis of liquid crystal copolyesters with high-frequency low dielectric loss and inherent flame retardancy . Chin. Chem. Lett. , 2023 , 34 ( 5 ), 107615 . doi: 10.1016/j.cclet.2022.06.038 http://dx.doi.org/10.1016/j.cclet.2022.06.038
Sonnier R. ; Otazaghine B. ; Iftene F. ; Negrell C. ; David G. ; Howell B. A. Predicting the flammability of polymers from their chemical structure: An improved model based on group contributions . Polymer , 2016 , 86 , 42 - 55 . doi: 10.1016/j.polymer.2016.01.046 http://dx.doi.org/10.1016/j.polymer.2016.01.046
Sha W. X. ; Li Y. ; Tang S. ; Tian J. ; Zhao Y. M. ; Guo Y. Q. ; Zhang W. X. ; Zhang X. F. ; Lu S. F. ; Cao Y. C. ; Cheng S. J. Machine learning in polymer informatics . InfoMat , 2021 , 3 ( 4 ), 353 - 361 . doi: 10.1002/inf2.12167 http://dx.doi.org/10.1002/inf2.12167
Gormley A. J. ; Webb M. A. Machine learning in combinatorial polymer chemistry . Nat. Rev. Mater. , 2021 , 6 , 642 - 644 . doi: 10.1038/s41578-021-00282-3 http://dx.doi.org/10.1038/s41578-021-00282-3
Hu Y. X. ; Zhao W. L. ; Wang L. Q. ; Lin J. P. ; Du L. Machine-learning-assisted design of highly tough thermosetting polymers . ACS Appl. Mater. Interfaces , 2022 , 14 ( 49 ), 55004 - 55016 . doi: 10.1021/acsami.2c14290 http://dx.doi.org/10.1021/acsami.2c14290
McDonald S. M. ; Augustine E. K. ; Lanners Q. ; Rudin C. ; Catherine Brinson L. ; Becker M. L. Applied machine learning as a driver for polymeric biomaterials design . Nat. Commun. , 2023 , 14 ( 1 ), 4838 . doi: 10.1038/s41467-023-40459-8 http://dx.doi.org/10.1038/s41467-023-40459-8
Jafari P. ; Zhang R. R. ; Huo S. Q. ; Wang Q. S. ; Yong J. M. ; Hong M. ; Deo R. ; Wang H. ; Song P. G. Machine learning for expediting next-generation of fire-retardant polymer composites . Compos. Commun. , 2024 , 45 , 101806 . doi: 10.1016/j.coco.2023.101806 http://dx.doi.org/10.1016/j.coco.2023.101806
Wang R. ; Fu T. ; Yang Y. J. ; Song X. ; Wang X. L. ; Wang Y. Z. Scientific discovery framework accelerating advanced polymeric materials design . Research , 2024 , 7 , 0406 . doi: 10.34133/research.0406 http://dx.doi.org/10.34133/research.0406
Otsuka S. ; Kuwajima I. ; Hosoya J. ; Xu Y. B. ; Yamazaki, M. PoLyInfo: polymer database for polymeric materials design . In: 2011 International Conference on Emerging Intelligent Data and Web Technologies . Tirana, Albania : IEEE , 2011 . 22 - 29 . doi: 10.1109/eidwt.2011.13 http://dx.doi.org/10.1109/eidwt.2011.13
Schauser N. S. ; Kliegle G. A. ; Cooke P. ; Segalman R. A. ; Seshadri R. Database creation, visualization, and statistical learning for polymer Li + -electrolyte design . Chem. Mater. , 2021 , 33 ( 13 ), 4863 - 4876 . doi: 10.1021/acs.chemmater.0c04767 http://dx.doi.org/10.1021/acs.chemmater.0c04767
Huan T. D. ; Mannodi-Kanakkithodi A. ; Kim C. ; Sharma V. ; Pilania G. ; Ramprasad R. A polymer dataset for accelerated property prediction and design . Sci. Data , 2016 , 3 , 160012 . doi: 10.1038/sdata.2016.12 http://dx.doi.org/10.1038/sdata.2016.12
Kim C. ; Chandrasekaran A. ; Huan T. D. ; Das D. ; Ramprasad R. Polymer genome: a data-powered polymer informatics platform for property predictions . J. Phys. Chem. C , 2018 , 122 ( 31 ), 17575 - 17585 . doi: 10.1021/acs.jpcc.8b02913 http://dx.doi.org/10.1021/acs.jpcc.8b02913
Gao L. ; Lin J. P. ; Wang L. Q. ; Du L. Machine learning-assisted design of advanced polymeric materials . Acc. Mater. Res. , 2024 , 5 ( 5 ), 571 - 584 . doi: 10.1021/accountsmr.3c00288 http://dx.doi.org/10.1021/accountsmr.3c00288
Van Herck J. ; Harrisson S. ; Hutchinson R. A. ; Russell G. T. ; Junkers T. A machine-readable online database for rate coefficients in radical polymerization . Polym. Chem. , 2021 , 12 ( 25 ), 3688 - 3692 . doi: 10.1039/d1py00544h http://dx.doi.org/10.1039/d1py00544h
Ding Y. ; Chen Z. W. ; Tang C. Y. ; Huang W. ; Ren X. Y. ; Zhou K. Q. ; Hu H. Y. Development of a pyrolysis reaction model for epoxy based flame retardant composites: Relationship between pyrolysis behavior and material composition . Chem. Eng. J. , 2024 , 495 , 153628 . doi: 10.1016/j.cej.2024.153628 http://dx.doi.org/10.1016/j.cej.2024.153628
Shmakov A. G. ; Gerasimov I. E. ; Knyazkov D. A. ; Osipova K. N. ; Korobeinichev O. P. ; Trubachev S. A. ; Mebel A. M. ; Porfiriev D. P. ; Ghildina A. R. Development of the detailed mechanism of pyrolysis and combustion of triphenyl phosphate: new quantum chemistry calculations and experimental data on structure of the H 2/O2/Ar flame doped with TPP. Combust. Flame , 2024 , 266 , 113534 . doi: 10.1016/j.combustflame.2024.113534 http://dx.doi.org/10.1016/j.combustflame.2024.113534
Bednas M. E. ; Day M. ; Ho K. ; Sander R. ; Wiles D. M. Combustion and pyrolysis of poly(ethylene terephthalate) . I. The role of flame retardants on products of pyrolysis. J. Appl. Polym. Sci. , 1981 , 26 ( 1 ), 277 - 289 . doi: 10.1002/app.1981.070260126 http://dx.doi.org/10.1002/app.1981.070260126
Kandare E. ; Kandola B. K. ; Price D. ; Nazaré S. ; Horrocks R. A. Study of the thermal decomposition of flame-retarded unsaturated polyester resins by thermogravimetric analysis and Py-GC/MS . Polym. Degrad. Stabil. , 2008 , 93 ( 11 ), 1996 - 2006 . doi: 10.1016/j.polymdegradstab.2008.03.032 http://dx.doi.org/10.1016/j.polymdegradstab.2008.03.032
Li Q. ; Chen, Y. L. Entity-relationship diagram . In: Modeling and Analysis of Enterprise and Information Systems . Berlin, Heidelberg : Springer , 2009 . 125 - 139 . doi: 10.1007/978-3-540-89556-5_6 http://dx.doi.org/10.1007/978-3-540-89556-5_6
Weininger, D. Smiles , a chemical language and information system . 1 . Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci., 1988, 28 ( 1 ), 31 - 36 . doi: 10.1021/ci00057a005 http://dx.doi.org/10.1021/ci00057a005
Vershinin I. S. ; Mustafina A. R. Performance analysis of PostgreSQL , MySQL , microsoft SQL server systems based on TPC-H tests . In: 2021 International Russian Automation Conference (RusAutoCon) . Sochi, Russian Federation : IEEE , 2021 . 683 - 687 . doi: 10.1109/rusautocon52004.2021.9537400 http://dx.doi.org/10.1109/rusautocon52004.2021.9537400
Dong X. ; Chen L. ; Duan R. T. ; Wang Y. Z. Phenylmaleimide-containing PET-based copolyester: cross-linking from 2π + π cycloaddition toward flame retardance and anti-dripping . Polym. Chem. , 2016 , 7 ( 15 ), 2698 - 2708 . doi: 10.1039/c6py00183a http://dx.doi.org/10.1039/c6py00183a
Tomiak F. ; Rathberger K. ; Schöffel A. ; Drummer D. Expandable graphite for flame retardant PA6 applications . Polymers , 2021 , 13 ( 16 ), 2733 . doi: 10.3390/polym13162733 http://dx.doi.org/10.3390/polym13162733
Hu Z. ; Chen L. ; Zhao B. ; Luo Y. ; Wang D. Y. ; Wang Y. Z. A novel efficient halogen-free flame retardant system for polycarbonate . Polym. Degrad. Stabil. , 2011 , 96 ( 3 ), 320 - 327 . doi: 10.1016/j.polymdegradstab.2010.03.005 http://dx.doi.org/10.1016/j.polymdegradstab.2010.03.005
0
Views
230
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution