浏览全部资源
扫码关注微信
高分子化学与物理教育部重点实验室 北京大学材料科学与工程学院 北京 100871
Received:04 October 2024,
Accepted:2024-11-25,
Published Online:22 January 2025,
Published:20 March 2025
移动端阅览
潘熙然, 张志, 雷霆. 共轭高分子在脑机接口中的应用与展望. 高分子学报, 2025, 56(3), 377-395
Pan, X. R.; Zhang, Z.; Lei, T. Application and prospects of conjugated polymers in brain-computer interfaces. Acta Polymerica Sinica, 2025, 56(3), 377-395
潘熙然, 张志, 雷霆. 共轭高分子在脑机接口中的应用与展望. 高分子学报, 2025, 56(3), 377-395 DOI: 10.11777/j.issn1000-3304.2024.24249. CSTR: 32057.14.GFZXB.2024.7324.
Pan, X. R.; Zhang, Z.; Lei, T. Application and prospects of conjugated polymers in brain-computer interfaces. Acta Polymerica Sinica, 2025, 56(3), 377-395 DOI: 10.11777/j.issn1000-3304.2024.24249. CSTR: 32057.14.GFZXB.2024.7324.
脑机接口能够在生物神经系统与电子设备之间建立双向通信,在神经科学研究、医疗康复和虚拟现实等领域发挥着重要作用. 共轭高分子具有柔性、良好的生物相容性和优异的光电特性,在柔性脑机接口中展现出巨大潜力,有望实现更高效、稳定和长期的神经信号采集与传输. 本综述总结了近年来共轭高分子材料在脑机接口领域的应用进展,介绍了导电共轭高分子电极在脑电信号采集中的应用,重点阐述了基于半导体共轭高分子的有机电化学晶体管器件在信号放大和提高信噪比等方面的独特优势. 此外,还探讨了基于共轭高分子的水凝胶材料的潜力与发展现状,并总结了该领域的发展趋势及主要挑战. 综合分析表明,共轭高分子在推动脑机接口多功能化和长期稳定监测方面具有广阔前景. 未来研究应聚焦于开发高性能共轭高分子基水凝胶材料、优化器件结构和开展系统集成,以推动柔性脑机接口技术的发展.
Conjugated polymers
with their flexibility
biocompatibility
and excellent electrical properties
demonstrate significant potential in flexible brain-computer interfaces (BCIs)
offering prospects for more efficient
stable
and long-term neural signal acquisition and transmission. This review summarizes recent advances in applying conjugated polymers in BCIs
first introducing the use of conductive conjugated polymer electrodes for electrical signal acquisition
highlighting the the unique advantages of organic electrochemical transistor (OECT) devices based on semiconducting conjugated polymers in signal amplification and improving signal-to-noise ratio. In addition
the review explores the potential and current development of hydrogel materials derived from conjugated polymers
summarizing the trends and major challenges in this field. The review indicates that conjugated polymers hold significant potential for advancing BCI multifunctionality and ensuring long-term stable monitoring. We think future research should focus on the development of high-performance conjugated polymer-based hydrogels
device architecture optimization
and system-level integration to further advance flexible BCI technologies.
Thakor N. V. Translating the brain-machine interface . Sci. Transl. Med. , 2013 , 5 ( 210 ), 210ps 17 . doi: 10.1126/scitranslmed.3007303 http://dx.doi.org/10.1126/scitranslmed.3007303
Stanley G. B. Reading and writing the neural code . Nat. Neurosci. , 2013 , 16 ( 3 ), 259 - 263 . doi: 10.1038/nn.3330 http://dx.doi.org/10.1038/nn.3330
Hochberg L. R. ; Serruya M. D. ; Friehs G. M. ; Mukand J. A. ; Saleh M. ; Caplan A. H. ; Branner A. ; Chen D. ; Penn R. D. ; Donoghue J. P. Neuronal ensemble control of prosthetic devices by a human with tetraplegia . Nature , 2006 , 442 ( 7099 ), 164 - 171 . doi: 10.1038/nature04970 http://dx.doi.org/10.1038/nature04970
Hochberg L. R. ; Bacher D. ; Jarosiewicz B. ; Masse N. Y. ; Simeral J. D. ; Vogel J. ; Haddadin S. ; Liu J. ; Cash S. S. ; van der Smagt P. ; Donoghue J. P. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm . Nature , 2012 , 485 ( 7398 ), 372 - 375 . doi: 10.1038/nature11076 http://dx.doi.org/10.1038/nature11076
Collinger J. L. ; Wodlinger B. ; Downey J. E. ; Wang W. ; Tyler-Kabara E. C. ; Weber D. J. ; McMorland A. J. C. ; Velliste M. ; Boninger M. L. ; Schwartz A. B. High-performance neuroprosthetic control by an individual with tetraplegia . Lancet , 2013 , 381 ( 9866 ), 557 - 564 . doi: 10.1016/s0140-6736(12)61816-9 http://dx.doi.org/10.1016/s0140-6736(12)61816-9
Dobkin B. H. Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation . J. Physiol. , 2007 , 579 (Pt 3 ), 637 - 642 . doi: 10.1113/jphysiol.2006.123067 http://dx.doi.org/10.1113/jphysiol.2006.123067
Mak J. N. ; Wolpaw J. R. Clinical applications of brain-computer interfaces: current state and future prospects . IEEE Rev. Biomed. Eng. , 2009 , 2 , 187 - 199 . doi: 10.1109/rbme.2009.2035356 http://dx.doi.org/10.1109/rbme.2009.2035356
Sellers E. W. ; Ryan D. B. ; Hauser C. K. Noninvasive brain-computer interface enables communication after brainstem stroke . Sci. Transl. Med. , 2014 , 6 ( 257 ), 257re 7 . doi: 10.1126/scitranslmed.3007801 http://dx.doi.org/10.1126/scitranslmed.3007801
Peksa J. ; Mamchur D. State-of-the-art on brain-computer interface technology . Sensors , 2023 , 23 ( 13 ), 6001 . doi: 10.3390/s23136001 http://dx.doi.org/10.3390/s23136001
Alivisatos A. P. ; Andrews A. M. ; Boyden E. S. ; Chun M. ; Church G. M. ; Deisseroth K. ; Donoghue J. P. ; Fraser S. E. ; Lippincott-Schwartz J. ; Looger L. L. ; Masmanidis S. ; McEuen P. L. ; Nurmikko A. V. ; Park H. ; Peterka D. S. ; Reid C. ; Roukes M. L. ; Scherer A. ; Schnitzer M. ; Sejnowski T. J. ; Shepard K. L. ; Tsao D. ; Turrigiano G. ; Weiss P. S. ; Xu C. ; Yuste R. ; Zhuang X. W. Nanotools for neuroscience and brain activity mapping . ACS Nano , 2013 , 7 ( 3 ), 1850 - 1866 . doi: 10.1021/nn4012847 http://dx.doi.org/10.1021/nn4012847
Sun Y. K. ; Chen X. G. ; Liu B. C. ; Liang L. Y. ; Wang Y. J. ; Gao S. K. ; Gao X. R. Signal acquisition of brain-computer interfaces: a medical-engineering crossover perspective review . Fundam. Res. , 2024 , Doi: 10.1016/j.fmre.2024.04.011. http://dx.doi.org/10.1016/j.fmre.2024.04.011.
Wise K. D. ; Angell J. B. ; Starr A. An integrated-circuit approach to extracellular microelectrodes . IEEE Trans. Biomed. Eng. , 1970 , BME-17( 3 ), 238 - 247 . doi: 10.1109/tbme.1970.4502738 http://dx.doi.org/10.1109/tbme.1970.4502738
Schwartz A. B. Cortical neural prosthetics . Annu. Rev. Neurosci. , 2004 , 27 , 487 - 507 . doi: 10.1146/annurev.neuro.27.070203.144233 http://dx.doi.org/10.1146/annurev.neuro.27.070203.144233
Jun J. J. ; Steinmetz N. A. ; Siegle J. H. ; Denman D. J. ; Bauza M. ; Barbarits B. ; Lee A. K. ; Anastassiou C. A. ; Andrei A. ; Aydın Ç. ; Barbic M. ; Blanche T. J. ; Bonin V. ; Couto J. ; Dutta B. ; Gratiy S. L. ; Gutnisky D. A. ; Häusser M. ; Karsh B. ; Ledochowitsch P. ; Lopez C. M. ; Mitelut C. ; Musa S. ; Okun M. ; Pachitariu M. ; Putzeys J. ; Rich P. D. ; Rossant C. ; Sun W. L. ; Svoboda K. ; Carandini M. ; Harris K. D. ; Koch C. ; O'Keefe J. ; Harris T. D. Fully integrated silicon probes for high-density recording of neural activity . Nature , 2017 , 551 ( 7679 ), 232 - 236 . doi: 10.1038/nature24636 http://dx.doi.org/10.1038/nature24636
Steinmetz N. A. ; Aydin C. ; Lebedeva A. ; Okun M. ; Pachitariu M. ; Bauza M. ; Beau M. ; Bhagat J. ; Böhm C. ; Broux M. ; Chen S. S. ; Colonell J. ; Gardner R. J. ; Karsh B. ; Kloosterman F. ; Kostadinov D. ; Mora-Lopez C. ; O'Callaghan J. ; Park J. ; Putzeys J. ; Sauerbrei B. ; van Daal R. J. J. ; Vollan A. Z. ; Wang S. W. ; Welkenhuysen M. ; Ye Z. W. ; Dudman J. T. ; Dutta B. ; Hantman A. W. ; Harris K. D. ; Lee A. K. ; Moser E. I. ; O'Keefe J. ; Renart A. ; Svoboda K. ; Häusser M. ; Haesler S. ; Carandini M. ; Harris T. D. Neuropixels 2 . 0 : a miniaturized high-density probe for stable, long-term brain recordings . Science, 2021, 372 ( 6539 ), eabf 4588 . doi: 10.1126/science.abf4588 http://dx.doi.org/10.1126/science.abf4588
Paulk A. C. ; Kfir Y. ; Khanna A. R. ; Mustroph M. L. ; Trautmann E. M. ; Soper D. J. ; Stavisky S. D. ; Welkenhuysen M. ; Dutta B. ; Shenoy K. V. ; Hochberg L. R. ; Richardson R. M. ; Williams Z. M. ; Cash S. S. Large-scale neural recordings with single neuron resolution using neuropixels probes in human cortex . Nat. Neurosci. , 2022 , 25 ( 2 ), 252 - 263 . doi: 10.1038/s41593-021-00997-0 http://dx.doi.org/10.1038/s41593-021-00997-0
Obaid A. ; Hanna M. E. ; Wu Y. W. ; Kollo M. ; Racz R. ; Angle M. R. ; Müller J. ; Brackbill N. ; Wray W. ; Franke F. ; Chichilnisky E. J. ; Hierlemann A. ; Ding J. B. ; Schaefer A. T. ; Melosh N. A. Massively parallel microwire arrays integrated with CMOS chips for neural recording . Sci. Adv. , 2020 , 6 ( 12 ), eaay 2789 . doi: 10.1126/sciadv.aay2789 http://dx.doi.org/10.1126/sciadv.aay2789
HajjHassan M. ; Chodavarapu V. ; Musallam S. NeuroMEMS: neural probe microtechnologies . Sensors , 2008 , 8 ( 10 ), 6704 - 6726 . doi: 10.3390/s8106704 http://dx.doi.org/10.3390/s8106704
Paulsen B. D. ; Tybrandt K. ; Stavrinidou E. ; Rivnay J. Organic mixed ionic-electronic conductors . Nat. Mater. , 2020 , 19 ( 1 ), 13 - 26 . doi: 10.1038/s41563-019-0435-z http://dx.doi.org/10.1038/s41563-019-0435-z
Liu Y. X. ; Li J. X. ; Song S. ; Kang J. ; Tsao Y. ; Chen S. C. ; Mottini V. ; McConnell K. ; Xu W. H. ; Zheng Y. Q. ; Tok J. B. H. ; George P. M. ; Bao Z. N. Morphing electronics enable neuromodulation in growing tissue . Nat. Biotechnol. , 2020 , 38 ( 9 ), 1031 - 1036 . doi: 10.1038/s41587-020-0495-2 http://dx.doi.org/10.1038/s41587-020-0495-2
Feig V. R. ; Tran H. ; Bao Z. N. Biodegradable polymeric materials in degradable electronic devices . ACS Cent. Sci. , 2018 , 4 ( 3 ), 337 - 348 . doi: 10.1021/acscentsci.7b00595 http://dx.doi.org/10.1021/acscentsci.7b00595
Robinson D. A. The electrical properties of metal microelectrodes . Proc. IEEE , 1968 , 56 ( 6 ), 1065 - 1071 . doi: 10.1109/proc.1968.6458 http://dx.doi.org/10.1109/proc.1968.6458
Green R. A. ; Lovell N. H. ; Wallace G. G. ; Poole-Warren L. A. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant . Biomaterials , 2008 , 29 ( 24-25 ), 3393 - 3399 . doi: 10.1016/j.biomaterials.2008.04.047 http://dx.doi.org/10.1016/j.biomaterials.2008.04.047
Cui X. Y. ; Hetke J. F. ; Wiler J. A. ; Anderson D. J. ; Martin D. C. Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes . Sens. Actuat. A Phys. , 2001 , 93 ( 1 ), 8 - 18 . doi: 10.1016/s0924-4247(01)00637-9 http://dx.doi.org/10.1016/s0924-4247(01)00637-9
Ludwig K. A. ; Uram J. D. ; Yang J. Y. ; Martin D. C. ; Kipke D. R. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film . J. Neural Eng. , 2006 , 3 ( 1 ), 59 - 70 . doi: 10.1088/1741-2560/3/1/007 http://dx.doi.org/10.1088/1741-2560/3/1/007
Qi D. P. ; Liu Z. Y. ; Liu Y. ; Jiang Y. ; Leow W. R. ; Pal M. ; Pan S. W. ; Yang H. ; Wang Y. ; Zhang X. Q. ; Yu J. C. ; Li B. ; Yu Z. ; Wang W. ; Chen X. D. Highly stretchable, compliant, polymeric microelectrode arrays for in vivo electrophysiological interfacing . Adv. Mater. , 2017 , 29 ( 40 ), 1702800 . doi: 10.1002/adma.201702800 http://dx.doi.org/10.1002/adma.201702800
Cui X. Y. ; Lee V. A. ; Raphael Y. ; Wiler J. A. ; Hetke J. F. ; Anderson D. J. ; Martin D. C. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends . J. Biomed. Mater. Res. , 2001 , 56 ( 2 ), 261 - 272 . doi: 10.1002/1097-4636(200108)56:2<261::aid-jbm1094>3.0.co;2-i http://dx.doi.org/10.1002/1097-4636(200108)56:2<261::aid-jbm1094>3.0.co;2-i
Beck F. ; Braun P. ; Oberst M. Organic electrochemistry in the solid state-overoxidation of polypyrrole . Ber. Bunsenges. Phys. Chem. , 1987 , 91 ( 9 ), 967 - 974 . doi: 10.1002/bbpc.19870910927 http://dx.doi.org/10.1002/bbpc.19870910927
Cui X. Y. ; Martin D. C. Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays . Sens. Actuat. B Chem. , 2003 , 89 ( 1-2 ), 92 - 102 . doi: 10.1016/s0925-4005(02)00448-3 http://dx.doi.org/10.1016/s0925-4005(02)00448-3
Filho G. ; Júnior C. ; Spinelli B. ; Damasceno I. ; Fiuza F. ; Morya E. All-polymeric electrode based on PEDOT:PSS for in vivo neural recording . Biosensors , 2022 , 12 ( 10 ), 853 . doi: 10.3390/bios12100853 http://dx.doi.org/10.3390/bios12100853
Kozai T. D. ; Langhals N. B. ; Patel P. R. ; Deng X. P. ; Zhang H. N. ; Smith K. L. ; Lahann J. ; Kotov N. A. ; Kipke D. R. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces . Nat. Mater. , 2012 , 11 ( 12 ), 1065 - 1073 . doi: 10.1038/nmat3468 http://dx.doi.org/10.1038/nmat3468
Khodagholy D. ; Gelinas J. N. ; Thesen T. ; Doyle W. ; Devinsky O. ; Malliaras G. G. ; Buzsáki G. NeuroGrid: recording action potentials from the surface of the brain . Nat. Neurosci. , 2015 , 18 ( 2 ), 310 - 315 . doi: 10.1038/nn.3905 http://dx.doi.org/10.1038/nn.3905
Yang M. ; Yang T. T. ; Deng H. J. ; Wang J. J. ; Ning S. ; Li X. ; Ren X. N. ; Su Y. M. ; Zang J. F. ; Li X. J. ; Luo Z. Q. Poly(5-nitroindole) thin film as conductive and adhesive interfacial layer for robust neural interface . Adv. Funct. Mater. , 2021 , 31 ( 49 ), 2105857 . doi: 10.1002/adfm.202105857 http://dx.doi.org/10.1002/adfm.202105857
Felix S. H. ; Shah K. G. ; Tolosa V. M. ; Sheth H. J. ; Tooker A. C. ; Delima T. L. ; Jadhav S. P. ; Frank L. M. ; Pannu S. S. Insertion of flexible neural probes using rigid stiffeners attached with biodissolvable adhesive . J. Vis. Exp. , 2013 ( 79 ), e 50609 . doi: 10.3791/50609 http://dx.doi.org/10.3791/50609
Chung J. E. ; Joo H. R. ; Fan J. L. ; Liu D. F. ; Barnett A. H. ; Chen S. P. ; Geaghan-Breiner C. ; Karlsson M. P. ; Karlsson M. ; Lee K. Y. ; Liang H. X. ; Magland J. F. ; Pebbles J. A. ; Tooker A. C. ; Greengard L. F. ; Tolosa V. M. ; Frank L. M. High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays . Neuron , 2019 , 101 ( 1 ), 21 - 31 .e 5 . doi: 10.1016/j.neuron.2018.11.002 http://dx.doi.org/10.1016/j.neuron.2018.11.002
Liu J. ; Fu T. M. ; Cheng Z. G. ; Hong G. S. ; Zhou T. ; Jin L. H. ; Duvvuri M. ; Jiang Z. ; Kruskal P. ; Xie C. ; Suo Z. G. ; Fang Y. ; Lieber C. M. Syringe-injectable electronics . Nat. Nanotechnol. , 2015 , 10 ( 7 ), 629 - 636 . doi: 10.1038/nnano.2015.115 http://dx.doi.org/10.1038/nnano.2015.115
Fu T. M. ; Hong G. S. ; Zhou T. ; Schuhmann T. G. ; Viveros R. D. ; Lieber C. M. Stable long-term chronic brain mapping at the single-neuron level . Nat. Methods , 2016 , 13 ( 10 ), 875 - 882 . doi: 10.1038/nmeth.3969 http://dx.doi.org/10.1038/nmeth.3969
Wang Y. Z. ; Wustoni S. ; Surgailis J. ; Zhong Y. Z. ; Koklu A. ; Inal S. Designing organic mixed conductors for electrochemical transistor applications . Nat. Rev. Mater. , 2024 , 9 , 249 - 265 . doi: 10.1038/s41578-024-00652-7 http://dx.doi.org/10.1038/s41578-024-00652-7
Leleux P. ; Rivnay J. ; Lonjaret T. ; Badier J. M. ; Bénar C. ; Hervé T. ; Chauvel P. ; Malliaras G. G. Organic electrochemical transistors for clinical applications . Adv. Healthc. Mater. , 2015 , 4 ( 1 ), 142 - 147 . doi: 10.1002/adhm.201400356 http://dx.doi.org/10.1002/adhm.201400356
Bernards D. A. ; Malliaras G. G. Steady-state and transient behavior of organic electrochemical transistors . Adv. Funct. Mater. , 2007 , 17 ( 17 ), 3538 - 3544 . doi: 10.1002/adfm.200601239 http://dx.doi.org/10.1002/adfm.200601239
Rivnay J. ; Inal S. ; Salleo A. ; Owens R. M. ; Berggren M. ; Malliaras G. G. Organic electrochemical transistors . Nat. Rev. Mater. , 2018 , 3 ( 2 ), 17086 . doi: 10.1038/natrevmats.2017.86 http://dx.doi.org/10.1038/natrevmats.2017.86
Khodagholy D. ; Rivnay J. ; Sessolo M. ; Gurfinkel M. ; Leleux P. ; Jimison L. H. ; Stavrinidou E. ; Herve T. ; Sanaur S. ; Owens R. M. ; Malliaras G. G. High transconductance organic electrochemical transistors . Nat. Commun. , 2013 , 4 , 2133 . doi: 10.1038/ncomms3133 http://dx.doi.org/10.1038/ncomms3133
Pitsalidis C. ; Ferro M. P. ; Iandolo D. ; Tzounis L. ; Inal S. ; Owens R. M. Transistor in a tube: a route to three-dimensional bioelectronics . Sci. Adv. , 2018 , 4 ( 10 ), eaat 4253 . doi: 10.1126/sciadv.aat4253 http://dx.doi.org/10.1126/sciadv.aat4253
Yang A. N. ; Li Y. Z. ; Yang C. X. ; Fu Y. ; Wang N. X. ; Li L. ; Yan F. Fabric organic electrochemical transistors for biosensors . Adv. Mater. , 2018 , 30 ( 23 ), 1800051 . doi: 10.1002/adma.201800051 http://dx.doi.org/10.1002/adma.201800051
Zhang Z. ; Li P. Y. ; Xiong M. ; Zhang L. ; Chen J. P. ; Lei X. ; Pan X. R. ; Wang X. ; Deng X. Y. ; Shen W. Y. ; Mei Z. ; Liu K. K. ; Liu G. C. ; Huang Z. ; Lv S. X. ; Shao Y. L. ; Lei T. Continuous production of ultratough semiconducting polymer fibers with high electronic performance . Sci. Adv. , 2024 , 10 ( 14 ), eadk 0647 . doi: 10.1126/sciadv.adk0647 http://dx.doi.org/10.1126/sciadv.adk0647
Khodagholy D. ; Doublet T. ; Quilichini P. ; Gurfinkel M. ; Leleux P. ; Ghestem A. ; Ismailova E. ; Hervé T. ; Sanaur S. ; Bernard C. ; Malliaras G. G. In vivo recordings of brain activity using organic transistors . Nat. Commun. , 2013 , 4 , 1575 . doi: 10.1038/ncomms2573 http://dx.doi.org/10.1038/ncomms2573
Venkatraman V. ; Friedlein J. T. ; Giovannitti A. ; Maria I. P. ; McCulloch I. ; McLeod R. R. ; Rivnay J. Subthreshold operation of organic electrochemical transistors for biosignal amplification . Adv. Sci. , 2018 , 5 ( 8 ), 1800453 . doi: 10.1002/advs.201800453 http://dx.doi.org/10.1002/advs.201800453
Spyropoulos G. D. ; Gelinas J. N. ; Khodagholy D. Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics . Sci. Adv. , 2019 , 5 ( 2 ), eaau 7378 . doi: 10.1126/sciadv.aau7378 http://dx.doi.org/10.1126/sciadv.aau7378
Rivnay J. ; Leleux P. ; Sessolo M. ; Khodagholy D. ; Hervé T. ; Fiocchi M. ; Malliaras G. G. Organic electrochemical transistors with maximum transconductance at zero gate bias . Adv. Mater. , 2013 , 25 ( 48 ), 7010 - 7014 . doi: 10.1002/adma.201303080 http://dx.doi.org/10.1002/adma.201303080
Seese T. M. ; Harasaki H. ; Saidel G. M. ; Davies C. R. Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating . Lab. Invest. , 1998 , 78 ( 12 ), 1553 - 1562 .
Giustolisi G. ; Palumbo G. ; Criscione M. ; Cutri F. A low-voltage low-power voltage reference based on subthreshold MOSFETs . IEEE J. Solid State Circuits , 2003 , 38 ( 1 ), 151 - 154 . doi: 10.1109/jssc.2002.806266 http://dx.doi.org/10.1109/jssc.2002.806266
Ferreira L. H. C. ; Pimenta T. C. ; Moreno R. L. An ultra-low-voltage ultra-low-power CMOS miller OTA with rail-to-rail input/output swing . IEEE Trans. Circuits Syst. II , 2007 , 54 ( 10 ), 843 - 847 . doi: 10.1109/tcsii.2007.902216 http://dx.doi.org/10.1109/tcsii.2007.902216
Cea C. ; Spyropoulos G. D. ; Jastrzebska-Perfect P. ; Ferrero J. J. ; Gelinas J. N. ; Khodagholy D. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology . Nat. Mater. , 2020 , 19 ( 6 ), 679 - 686 . doi: 10.1038/s41563-020-0638-3 http://dx.doi.org/10.1038/s41563-020-0638-3
Cea C. ; Zhao Z. F. ; Wisniewski D. J. ; Spyropoulos G. D. ; Polyravas A. ; Gelinas J. N. ; Khodagholy D. Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics . Nat. Mater. , 2023 , 22 ( 10 ), 1227 - 1235 . doi: 10.1038/s41563-023-01599-w http://dx.doi.org/10.1038/s41563-023-01599-w
Uguz I. ; Ohayon D. ; Yilmaz S. ; Griggs S. ; Sheelamanthula R. ; Fabbri J. D. ; McCulloch I. ; Inal S. ; Shepard K. L. Complementary integration of organic electrochemical transistors for front-end amplifier circuits of flexible neural implants . Sci. Adv. , 2024 , 10 ( 12 ), eadi 9710 . doi: 10.1126/sciadv.adi9710 http://dx.doi.org/10.1126/sciadv.adi9710
Zhou F. C. ; Chai Y. Near-sensor and in-sensor computing . Nat. Electron. , 2020 , 3 , 664 - 671 . doi: 10.1038/s41928-020-00501-9 http://dx.doi.org/10.1038/s41928-020-00501-9
Berényi A. ; Somogyvári Z. ; Nagy A. J. ; Roux L. ; Long J. D. ; Fujisawa S. ; Stark E. ; Leonardo A. ; Harris T. D. ; Buzsáki G. Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals . J. Neurophysiol. , 2014 , 111 ( 5 ), 1132 - 1149 . doi: 10.1152/jn.00785.2013 http://dx.doi.org/10.1152/jn.00785.2013
Griggs S. ; Marks A. ; Bristow H. ; McCulloch I. N -type organic semiconducting polymers: stability limitations, design considerations and applications . J. Mater. Chem. C , 2021 , 9 ( 26 ), 8099 - 8128 . doi: 10.1039/d1tc02048j http://dx.doi.org/10.1039/d1tc02048j
Li P. Y. ; Shi J. W. ; Lei Y. Q. ; Huang Z. ; Lei T. Switching p-type to high-performance n-type organic electrochemical transistors via doped state engineering . Nat. Commun. , 2022 , 13 ( 1 ), 5970 . doi: 10.1038/s41467-022-33553-w http://dx.doi.org/10.1038/s41467-022-33553-w
Huang W. ; Chen J. H. ; Yao Y. ; Zheng D. ; Ji X. D. ; Feng L. W. ; Moore D. ; Glavin N. R. ; Xie M. ; Chen Y. ; Pankow R. M. ; Surendran A. ; Wang Z. ; Xia Y. ; Bai L. B. ; Rivnay J. ; Ping J. F. ; Guo X. G. ; Cheng Y. H. ; Marks T. J. ; Facchetti A. Vertical organic electrochemical transistors for complementary circuits . Nature , 2023 , 613 ( 7944 ), 496 - 502 . doi: 10.1038/s41586-022-05592-2 http://dx.doi.org/10.1038/s41586-022-05592-2
Khang D. Y. ; Jiang H. Q. ; Huang Y. ; Rogers J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates . Science , 2006 , 311 ( 5758 ), 208 - 212 . doi: 10.1126/science.1121401 http://dx.doi.org/10.1126/science.1121401
Wu B. ; Heidelberg A. ; Boland J. J. Mechanical properties of ultrahigh-strength gold nanowires . Nat. Mater. , 2005 , 4 ( 7 ), 525 - 529 . doi: 10.1038/nmat1403 http://dx.doi.org/10.1038/nmat1403
Decataldo F. ; Cramer T. ; Martelli D. ; Gualandi I. ; Korim W. S. ; Yao S. T. ; Tessarolo M. ; Murgia M. ; Scavetta E. ; Amici R. ; Fraboni B. Stretchable low impedance electrodes for bioelectronic recording from small peripheral nerves . Sci. Rep. , 2019 , 9 ( 1 ), 10598 . doi: 10.1038/s41598-019-46967-2 http://dx.doi.org/10.1038/s41598-019-46967-2
Chapman C. A. R. ; Aristovich K. ; Donega M. ; Fjordbakk C. T. ; Stathopoulou T. R. ; Viscasillas J. ; Avery J. ; Perkins J. D. ; Holder D. Electrode fabrication and interface optimization for imaging of evoked peripheral nervous system activity with electrical impedance tomography (EIT) . J. Neural Eng. , 2019 , 16 ( 1 ), 016001 . doi: 10.1088/1741-2552/aae868 http://dx.doi.org/10.1088/1741-2552/aae868
Jiang Y. W. ; Zhang Z. T. ; Wang Y. X. ; Li D. L. ; Coen C. T. ; Hwaun E. ; Chen G. ; Wu H. C. ; Zhong D. L. ; Niu S. M. ; Wang W. C. ; Saberi A. ; Lai J. C. ; Wu Y. L. ; Wang Y. ; Trotsyuk A. A. ; Loh K. Y. ; Shih C. C. ; Xu W. H. ; Liang K. ; Zhang K. L. ; Bai Y. H. ; Gurusankar G. ; Hu W. P. ; Jia W. ; Cheng Z. ; Dauskardt R. H. ; Gurtner G. C. ; Tok J. B. H. ; Deisseroth K. ; Soltesz I. ; Bao Z. N. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics . Science , 2022 , 375 ( 6587 ), 1411 - 1417 . doi: 10.1126/science.abj7564 http://dx.doi.org/10.1126/science.abj7564
Alegret N. ; Dominguez-Alfaro A. ; González-Domínguez J. M. ; Arnaiz B. ; Cossío U. ; Bosi S. ; Vázquez E. ; Ramos-Cabrer P. ; Mecerreyes D. ; Prato M. Three-dimensional conductive scaffolds as neural prostheses based on carbon nanotubes and polypyrrole . ACS Appl. Mater. Interfaces , 2018 , 10 ( 50 ), 43904 - 43914 . doi: 10.1021/acsami.8b16462 http://dx.doi.org/10.1021/acsami.8b16462
Foroughi J. ; Ghorbani S. R. ; Peleckis G. ; Spinks G. M. ; Wallace G. G. ; Wang X. L. ; Dou S. X. The mechanical and the electrical properties of conducting polypyrrole fibers . J. Appl. Phys. , 2010 , 107 ( 10 ), 103712 . doi: 10.1063/1.3425793 http://dx.doi.org/10.1063/1.3425793
Xu Z. ; Croft Z. L. ; Guo D. ; Cao K. ; Liu G. L. Recent development of polyimides: synthesis, processing, and application in gas separation . J. Polym. Sci. , 2021 , 59 ( 11 ), 943 - 962 . doi: 10.1002/pol.20210001 http://dx.doi.org/10.1002/pol.20210001
Golda-Cepa M. ; Engvall K. ; Hakkarainen M. ; Kotarba A. Recent progress on parylene C polymer for biomedical applications: a review . Prog. Org. Coat. , 2020 , 140 , 105493 . doi: 10.1016/j.porgcoat.2019.105493 http://dx.doi.org/10.1016/j.porgcoat.2019.105493
Kong D. S. ; Pfattner R. ; Chortos A. ; Lu C. E. ; Hinckley A. C. ; Wang C. ; Lee W. Y. ; Chung J. W. ; Bao Z. N. Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors . Adv. Funct. Mater. , 2016 , 26 ( 26 ), 4680 - 4686 . doi: 10.1002/adfm.201600612 http://dx.doi.org/10.1002/adfm.201600612
Akindoyo J. O. ; Beg M. D. H. ; Ghazali S. ; Islam M. R. ; Jeyaratnam N. ; Yuvaraj A. R. Polyurethane types, synthesis and applications—a review . RSC Adv. , 2016 , 6 ( 115 ), 114453 - 114482 . doi: 10.1039/c6ra14525f http://dx.doi.org/10.1039/c6ra14525f
Jiao H. X. ; Zhang M. ; Du C. H. ; Zhang Z. W. ; Huang W. H. ; Huang Q. Y. Intrinsically stretchable all-carbon-nanotube transistors with styrene-ethylene-butylene-styrene as gate dielectrics integrated by photolithography-based process . RSC Adv. , 2020 , 10 ( 14 ), 8080 - 8086 . doi: 10.1039/c9ra10534d http://dx.doi.org/10.1039/c9ra10534d
Grigorescu R. M. ; Ciuprina F. ; Ghioca P. ; Ghiurea M. ; Iancu L. ; Spurcaciu B. ; Panaitescu D. M. Mechanical and dielectric properties of SEBS modified by graphite inclusion and composite interface . J. Phys. Chem. Solids , 2016 , 89 , 97 - 106 . doi: 10.1016/j.jpcs.2015.10.008 http://dx.doi.org/10.1016/j.jpcs.2015.10.008
Murthe S. S. ; Sreekantan S. ; Mydin R. B. S. M. N. Study on the physical, thermal and mechanical properties of SEBS/PP (styrene-ethylene-butylene-styrene/polypropylene) blend as a medical fluid bag . Polymers , 2022 , 14 ( 16 ), 3267 . doi: 10.3390/polym14163267 http://dx.doi.org/10.3390/polym14163267
Jin H. ; Jung S. ; Kim J. ; Heo S. ; Lim J. ; Park W. ; Chu H. Y. ; Bien F. ; Park K. Stretchable dual-capacitor multi-sensor for touch-curvature-pressure-strain sensing . Sci. Rep. , 2017 , 7 ( 1 ), 10854 . doi: 10.1038/s41598-017-11217-w http://dx.doi.org/10.1038/s41598-017-11217-w
Sales F. C. P. ; Ariati R. M. ; Noronha V. T. ; Ribeiro J. E. Mechanical characterization of PDMS with different mixing ratios . Procedia Struct. Integr. , 2022 , 37 , 383 - 388 . doi: 10.1016/j.prostr.2022.01.099 http://dx.doi.org/10.1016/j.prostr.2022.01.099
Rivnay J. ; Wang H. L. ; Fenno L. ; Deisseroth K. ; Malliaras G. G. Next-generation probes, particles, and proteins for neural interfacing . Sci. Adv. , 2017 , 3 ( 6 ), e 1601649 . doi: 10.1126/sciadv.1601649 http://dx.doi.org/10.1126/sciadv.1601649
Yuk H. ; Lu B. ; Zhao X. Hydrogel bioelectronics . Chem. Soc. Rev. , 2019 , 48 ( 6 ), 1642 - 1667 . doi: 10.1039/c8cs00595h http://dx.doi.org/10.1039/c8cs00595h
Liu Y. X. ; Liu J. ; Chen S. C. ; Lei T. ; Kim Y. ; Niu S. M. ; Wang H. L. ; Wang X. ; Foudeh A. M. ; Tok J. B. H. ; Bao Z. N. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation . Nat. Biomed. Eng. , 2019 , 3 ( 1 ), 58 - 68 . doi: 10.1038/s41551-018-0335-6 http://dx.doi.org/10.1038/s41551-018-0335-6
Kleber C. ; Bruns M. ; Lienkamp K. ; Rühe J. ; Asplund M. An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces . Acta Biomater. , 2017 , 58 , 365 - 375 . doi: 10.1016/j.actbio.2017.05.056 http://dx.doi.org/10.1016/j.actbio.2017.05.056
Park H. ; Robinson J. R. Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels . Pharm. Res. , 1987 , 4 ( 6 ), 457 - 464 . doi: 10.1023/a:1016467219657 http://dx.doi.org/10.1023/a:1016467219657
Wang H. H. ; Li X. N. ; Li M. C. ; Wang S. Q. ; Zuo A. L. ; Guo J. P. Bioadhesion design of hydrogels: adhesion strategies and evaluation methods for biological interfaces . J. Adhes. Sci. Technol. , 2023 , 37 ( 3 ), 335 - 369 . doi: 10.1080/01694243.2021.2020502 http://dx.doi.org/10.1080/01694243.2021.2020502
Awaja F. ; Gilbert M. ; Kelly G. ; Fox B. ; Pigram P. Adhesion of polymers . Prog. Polym. Sci. , 2009 , 34 , 948 - 968 . doi: 10.1016/j.progpolymsci.2009.04.007 http://dx.doi.org/10.1016/j.progpolymsci.2009.04.007
Ye M. M. ; Jiang R. ; Zhao J. ; Zhang J. T. ; Yuan X. B. ; Yuan X. Y. In situ formation of adhesive hydrogels based on PL with laterally grafted catechol groups and their bonding efficacy to wet organic substrates . J. Mater. Sci. Mater. Med. , 2015 , 26 ( 12 ), 273 . doi: 10.1007/s10856-015-5608-y http://dx.doi.org/10.1007/s10856-015-5608-y
Cheng S. M. ; Zhu R. Q. ; Xu X. M. Hydrogels for next generation neural interfaces . Commun. Mater. , 2024 , 5 , 99 . doi: 10.1038/s43246-024-00541-0 http://dx.doi.org/10.1038/s43246-024-00541-0
Wang X. ; Sun X. T. ; Gan D. L. ; Soubrier M. ; Chiang H. Y. ; Yan L. W. ; Li Y. Q. ; Li J. J. ; Yu S. ; Xia Y. ; Wang K. F. ; Qin Q. Z. ; Jiang X. X. ; Han L. ; Pan T. S. ; Xie C. M. ; Lu X. Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-evasive contact with brain tissue . Matter , 2022 , 5 ( 4 ), 1204 - 1223 . doi: 10.1016/j.matt.2022.01.012 http://dx.doi.org/10.1016/j.matt.2022.01.012
Zhang J. J. ; Wang L. L. ; Xue Y. ; Lei I. M. ; Chen X. M. ; Zhang P. ; Cai C. C. ; Liang X. Y. ; Lu Y. ; Liu J. Engineering electrodes with robust conducting hydrogel coating for neural recording and modulation . Adv. Mater. , 2023 , 35 ( 3 ), 2209324 . doi: 10.1002/adma.202370018 http://dx.doi.org/10.1002/adma.202370018
Li P. Y. ; Sun W. X. ; Li J. L. ; Chen J. P. ; Wang X. Y. ; Mei Z. ; Jin G. Y. ; Lei Y. Q. ; Xin R. Y. ; Yang M. ; Xu J. C. ; Pan X. R. ; Song C. ; Deng X. Y. ; Lei X. ; Liu K. ; Wang X. ; Zheng Y. T. ; Zhu J. ; Lv S. X. ; Zhang Z. ; Dai X. C. ; Lei T. N -type semiconducting hydrogel . Science , 2024 , 384 ( 6695 ), 557 - 563 . doi: 10.1126/science.adj4397 http://dx.doi.org/10.1126/science.adj4397
Zhao Z. F. ; Spyropoulos G. D. ; Cea C. ; Gelinas J. N. ; Khodagholy D. Ionic communication for implantable bioelectronics . Sci. Adv. , 2022 , 8 ( 14 ), eabm 7851 . doi: 10.1126/sciadv.abm7851 http://dx.doi.org/10.1126/sciadv.abm7851
Won D. ; Kim H. ; Kim J. ; Kim H. ; Kim M. W. ; Ahn J. ; Min K. ; Lee Y. ; Hong S. ; Choi J. ; Kim C. Y. ; Kim T. S. ; Ko S. H. Laser-induced wet stability and adhesion of pure conducting polymer hydrogels . Nat. Electron. , 2024 , 7 , 475 - 486 . doi: 10.1038/s41928-024-01161-9 http://dx.doi.org/10.1038/s41928-024-01161-9
0
Views
228
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution